Indian Agricultural: Growth, Generation, Policy & Problem Indian Agricultural | Page 33

Pg.no. 32 Increased use of irrigation played a major role in the green revolution. Biodiversity The spread of Green Revolution agriculture affected both agricultural biodiversity and wild biodiversity. There is little disagreement that the Green Revolution acted to reduce agricultural biodiversity, as it relied on just a few high-yield varieties of each crop. This has led to concerns about the susceptibility of a food supply to pathogens that cannot be controlled by agrochemicals, as well as the permanent loss of many valuable genetic traits bred into traditional varieties over thousands of years. To address these concerns, massive seed banks such as Consultative Group on International Agricultural Research’s (CGIAR) International Plant Genetic Resources Institute have been established (see Svalbard Global Seed Vault). There are varying opinions about the effect of the Green Revolution on wild biodiversity. One hypothesis speculates that by increasing production per unit of land area, agriculture will not need to expand into new, uncultivated areas to feed a growing human population. However, land degradation and soil nutrients depletion have forced farmers to clear up formerly forested areas in order to keep up with production. A counter-hypothesis speculates that biodiversity was sacrificed because traditional systems of agriculture that were displaced sometimes incorporated practices to preserve wild biodiversity, and because the Green Revolution expanded agricultural development into new areas where it was once unprofitable or too arid. For example, the development of wheat varieties tolerant to acid soil conditions with high aluminium content, permitted the introduction of agriculture in sensitive Brazilian ecosystems such as Cerrado semi-humid tropical savanna and Amazon rainforest in the geo-economics microregions of Centro-Sul and Amazônia. Before the Green Revolution, other Brazilian ecosystems were also significantly damaged by human activity, such as the once 1st or 2nd main contributor to Brazilian megadiversity Atlantic Rainforest (above 85% of deforestation in the 1980s, about 95% after the 2010s) and the important xeric shrublands called Caatinga mainly in North-eastern Brazil (about 40% in the 1980s, about 50% after the 2010s — deforestation of the Caatinga biome is generally associated with greater risks of desertification). This also caused many animal species to suffer due to their damaged habitats. Ramesh Kumar P