HHE Sponsored supplement: Sepsis | Page 16

References 1 Nduka OO, Parrillo JE. The pathophysiology of septic shock. In Dellinger R (ed) Critical Care Clinics. 2009; 25:677–70. 2 Bornay-Verder S, Maréchal V, Borde C. HMGP1: un lien inflammation septique et non septique. RFL 2009;417:59–68. 3 Gonçalves GM, Zamboni DS, Camara NO. The role of innate immunity in septic acute kidney injuries. Shock 2010;34:22–6. 4 Singer M et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016;315:801–10. 5 Carrillo-Esper R. Inmunidad innata, receptors Toll y sepsis. Cir Ciruj 2003;71:252–8. 6 Tsujimoto H et al. Role of toll- like receptors in the development of sepsis. Shock 2008;29(3):315–21. 7 Beutler, B et al. How we detect microbes and respond to them: the Toll-like receptors and their transducers. J Leukoc Biol 2003;74:479. 8 Liu SF, Asrar BM. NF-kB activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol 2006;290: 622–45. 9 Tracey KJ, Beutler B, Lowery SF. Shock and tissue injury induced by recombinant human cachectin. Science 1986;234:470. 10 McConnell KW, Coopersmith CM. Pathophysiology of septic shock: From bench to bedside. Presse Med 2016;45(4 Pt 2):e93–8. 11 Cavaillon JM, Adib-Conquy M. The proinflammatory cytokine cascade. In Marshall JC, Cohen H (eds) Inmune response in the critically ill. Springer;2000; 4:37–66. 12 Li J et al. Neutralisation of peritoneal IL-17A mark- edly improves the prognosis of severe septic mice by decreasing neutrophil infiltration and proinflammatory cytokines. PLoS One 2012;7(10):e46506. 13 Nahid MA et al. Regulation of TLR2-mediated tolerance and cross-tolerance through IRAK4 modulation by miR-132 and miR-212. J Immunol 2013;190(3):1250–63. 14 Ricciotti E, Fitzgerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 2011;31:986–1000. 15 Tam VC. Lipidomic profiling of bioactive lipids by mass spectrometry during microbial infections. Semin Immunol 2013;25:240–8. 16 Levy BD et al. Lipid mediator class switching during acute inflammation: Signals in resolution. Nat Immunol 2001;2: 612–19. 17 Hermans P, Hazelzet JA. Plasminogen activator inhibitor type 1 gene polymorphism and sepsis. Clin Infect Dis 2005;41: S453–S458. 18 Zeerleder S et al. TAFI and PAI-1 levels in human sepsis. Thromb Res 2006;118:205–12. 19 Ong ST et al. Iron-withholding strategy in innate immunity. Immunobiology 2006;211(4): 295–314. 20 Chaible UE, Kaufmann SH. Iron and microbial infection. Nat Rev Microbiol 2004;2(12):946–53. 21 Kangelaris KN et al. Increased expression of neutrophil-related genes in patients with early sepsis-induced ARDS. Am J Physiol Lung Cell Mol Physiol 2015;308(11):L1102–13. 22 Huang X et al. PD-1 expression by macro- phages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc Natl Acad Sci U S A 2009;106(15):6303–8. 23 Belikoff BG et al. A2B adenosine receptor blockade enhances macrophage- mediated bacterial phagocytosis and improves polymicrobial sepsis survival in mice. J Immunol 2011;186(4):2444–53. 24 Landelle C et al. Low monocyte human leukocyte antigen-DR is independently asso- ciated with nosocomial infections after septic shock. Intensive Care Med 2010;36(11):1859–66. 25 Guo Y et al.The biology of natural killer cells during sepsis. Immunology 2018;153(2): 190–202. 26 Boomer JS et al. Immunosup- pression in patients who die of sepsis and multiple organ failure. JAMA 2011;306(23):2594–605. 27 Bedoui S et al. Parallels and differences between innate and adaptive lymphocytes. Nat Immunol 2016;17(5):490–4. 28 Daix T et al. Multicentric standardized flow cytometry routine assessment of septic patient to predict clinical worsening. Chest 2018; Apr 26. pii: S0012-3692(18)30647-0. doi: 10.1016/j.chest.2018.03.058. 29 Krautz C et al. Reduced circulating B cells and plasma IgM levels are associated with decreased survival in sepsis - A meta-analysis. J Crit Care 2018;45:71–5. 30 Zhao Y et al. Predictive value of soluble programmed death-1 for severe sepsis and septic shock during the first week in an intensive care unit. Shock 2018;Apr 26. doi: 10.1097/ SHK.0000000000001171. 31 Liu Q et al. Increased expression of Programmed Cell Death-1 in regulatory T cells of patients with severe sepsis and septic shock: an observational clinical study. Scand J Immunol 2017;86(5):408–17. 32 Ferguson NR, Galley HF, Webster NR. T helper cell subset ratios in patients with severe sepsis. Intensive Care Med 1999;25(1):106–9. 33 Suzuki K et al. Reduced Immunocompetent B cells and increased secondary infection in elderly patients with severe sepsis. Shock 2016;46(3):270–8. 34 Bone RC, Grodzin CH, Balk R. Sepsis: A new hypothesis for pathogenesis of the disease process. Chest 1997;112(1): 235–45. 35 Li J et al. Alterations of T helper lymphocyte subpopulations in sepsis, severe sepsis, and septic shock: a prospective observational study. Inflammation 2015;38:995–1002. 36 Ferguson NR, Galley HF, Webster NR. T helper cell subset ratios in patients withsevere sepsis. Intensive Care Med 1999;25:106–9. 37 Pruitt JH, Copeland EM 3rd, Moldawer LL. Interleukin-1 and interleukin-1 antagonism in sepsis, systemic inflammatory response syndrome, and septic shock. Shock 1995;3:235. 38 Barriere SL, Lowry SF. An overview of mortality risk prediction in sepsis. Crit Care Med 1995;23:376. 39 Ince C. The microcirculation is the motor of sepsis. Critical Care. 2005; 9S13-9 40 Vincent JL. Hemodynamic support in septic shock. Intensive Care Med 2001; 27:80–92. 41 VanderMeer TJ, Wang H, Fink MP. Endotoxemia causes ileal mucosal acidosis in the absence of mucosal hypoxia in a normodynamic porcine model of septic shock. Crit Care Med 1995;23:1217. 42 Brealey D et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 2002;360:219. 43 Hotchkiss RS et al. Cell death. N Engl J Med 2009;361:1570–83. 44 Brealey D et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 2002;360:219–23. 45 Singer M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence 2014;5:66–72. 46 Hotchkiss RS, Nicholson DW. Apoptosis and caspases regulate death and inflammation in sepsis. Nat Rev Immunol 2006;6(11):813–22. 47 Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 2006;6:173–82. 48 Link DC. Neutrophil homeostasis: a new role for stromal cell-derived factor-1. Immunol Res 2005;32:169–78. 49 Tolsma V et al. Sepsis severe or septic shock: outcome according to immune status and immunodeficiency profile. Chest 2014;146(5):1205-13. 50 Adib-Conquy M, Cavaillon JM. Compensatory anti-inflammatory response syndrome. Thromb Haemost 2009;101:36. 51 Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol 2008;8:776–87. 52 Valenzuela-Sánchez F et al. Personalized medicine in severe influenza. Eur J Clin Microbiol Infect Dis 2016;35:893–7. 53 Pool R, Gomez H, Kellum JA. Mechanisms of organ dysfunction in sepsis. Crit Care Clin 2018;34(1):63–80. 54 Hernández G, Teboul JL. Is the macrocirculation really dissociated from the microcirculation in septic shock? Intensive Care Med 2016;42:1621–4. 55 McConnell KW, Coopersmith CM. Pathophysiology of septic shock: From bench to bedside. Presse Med 2016;45: e93–e98 56 Vincent JL et al. Effects of nitric oxide in septic shock. Am J Respir Crit Care Med 2000;161:1781. 57 Brain SD, Grant AD. Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol Rev 2004; 84(3):903–34. 58 Valenzuela-Sánchez F et al. New role of biomarkers: mid- regional pro-adrenomedullin, the biomarker of organ failure. Ann Transl Med 2016; 4(17):329. 59 Khakpour S, Wilhelmsen K, Hellman J. Vascular endothelial cell Toll-like receptor path-ways in sepsis. Innate Immun 2015;21 (8):827–46. 60 Adembri C et al. Sepsis induces albuminuria and alterations in the glomerular filtration barrier: a morphofunctional study in the rat. Crit Care 2011;15:R277. 61 Xu C et al. TNF-mediated damage to glomerular endothelium is an important determinant of acute kidney injury in sepsis. Kidney Int 2014;85:72–81 62 Alverdy JC, Laughlin RS, Wu L. Influence of the critically ill state 16 HHE 2018 | hospitalhealthcare.com on host–pathogen interactions within the intestine: gut-derived sepsis redefined. Crit Care Med 2003;31(2):598–607. 63 Alexander JW et al. The process of microbial translocation. Ann Surg 1990; 212:496–510. 64 Langkamp-Henken B, Glezer JA, Kudsk KA. Immunologic structure and function of the gastrointestinal tract. NCP 1992;7:100–5. 65 Carrico CJ et al. Multiple- organ-failure syndrome. The gastrointestinal tract: the “motor’’ of MOF. Arch Surg 1986;121(2):196–208. 66 Akrami K, Sweeney DA.The microbiome of the critically ill patient. Curr Opin Crit Care 2018; 24(1):49–54. 67 Rello J et al. Towards precision medicine in sepsis: a position paper from the European Society of Clinical Microbiology and Infectious Diseases. Clin Microbiol Infect. 2018; Mar 24. pii: S1198- 743X(18)30221-0. doi: 10.1016/j. cmi.2018.03.011. 68 Pugin J. Recognition of bacteria and bacterial products by host immune cells in sepsis. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine. Springer-Verlag, Berlin 1996;11. 69 Tolsma V et al. Sepsis severe or septic shock: outcome according to immune status and immunodeficiency profile. Chest 2014;146(5):1205–13. 70 Sørensen TI et al. Genetic and environmental influences on premature death in adult adoptees. N Engl J Med 1988; 318(12):727–32. 71 Shalhub S et al. Variation in the TLR4 gene influences the risk of organ failure and shock posttrauma: a cohort study. J Trauma 2009; 66(1):115–22. 72 Abu-Maziad A et al. Role of polymorphic variants as genetic modulators of infection in neonatal sepsis. Pediatr Res 2010;68(4):323–9. 73 Toubiana J et al. IRAK 1 functional genetic variant affects severity of septic shock. Crit Care Med 2010;38(12):2287–94. 74 Kompoti M et al. Genetic polymorphisms of innate and adaptive immunity as predictors of outcome in critically ill patients. Immunobiology 2015; 220(3):414–21. 75 Ong ST et al. Iron-withholding strategy in innate immunity. Immunobiology 2006;211(4): 295–314. 76 Wang S et al. The role of increased body mass index in outcomes of sepsis: a systematic review and meta-analysis. BMC Anesthesiol 2017;17(1):118. 77 Vieira AA et al. Obesity promotes oxidative stress and exacerbates sepsis-induced brain damage. Curr Neurovasc Res 2015;12(2):147–54. 78 Ng PY, Eikermann M. The obesity conundrum in sepsis. BMC Anesthesiol 2017;17(1):147. 79 Jacobsson S et al. Leptin independently predicts development of sepsis and its outcome. J Inflamm (Lond) 2017; 14:19. 80 Valenzuela-Méndez B et al. Pregnancy and influenza respiratory infection. Implications of immunological alterations, clinical repercussion and current basis of management and prevention. Ann Virol Res 2016;2(3):1019. 81 Nagamatsu T, Schust DJ. The contribution of macrophages to normal and pathological pregnancies. Am J Reprod Immunol 2010; 63:460–71. 82 Aagaard-Tillery KM, Silver R, Dalton J. Immunology of normal pregnancy. Semin Fetal Neonatal Med 2006;11:279–95. 83 Muzzio D, Zygmunt M, Jensen F. The role of pregnancy- associated hormones in the development and function of regulatory B cells. Front Endocrinol 2014;5:39. 84 Papp E et al. HIV protease inhibitor use during pregnancy is associated with decreased progesterone levels, suggesting a potential mechanism contributing to fetal growth restriction. J Infect Dis 2015;211:10–18. 85 Mehta A. Pulmonary consequences of alcoholism: a critical review. OA Alcohol 2013;1(2):17. 86 Simou E, Leonardi-Bee J, Britton J. The effect of alcohol consumption on the risk of ARDS: a systematic review and meta- analysis.Chest 2018;154(1):58–68. 87 Sarmiento EJ et al. Fine particulate matter pollution and risk of community-acquired sepsis. Int J Environ Res Public Health 2018; Apr 21;15(4). 88 Bello S et al. Tobacco smoking increases the risk for death from pneumococcal pneumonia. Chest 2014;146(4):1029–37. 89 Steiner A et al Nicotine administration and withdrawal affect survival in systemic inflammation models. J Appl Physiol (1985) 2008; 105(4): 1028–34. 90 Moromizato T et al. Association of low serum 25-hydroxyvitamin D levels and sepsis in the critically ill. Crit Care Med 2014;42(1):97–107. 91 de Haan K et al. Vitamin D deficiency as a risk factor for infection, sepsis and mortality in the critically ill. Crit Care 2014;18(6):660. 92 Ingraham BA, Bragdon B, Nohe A. Molecular basis of the potential of vitamin D to prevent cancer. Curr Med Res Opin 2008; 24(1):139–49. 93 Lasky-Su J et al. Metabolome alterations in severe critical illness and vitamin D status. Critical Care 2017;21:193 94 May JM, Harrison FE. Role of vitamin C in the function of the vascular endothelium. Antioxid Redox Signal 2013; 19(17):2068–83. 95 Barabutis N et al. Hydrocortisone and ascorbic acid synergistically prevent and repair lipopolysaccharide- induced pulmonary endothelial barrier dysfunction. Chest 2017;152(5):954–62 96 Marik PE et al. Hydrocortisone, vitamin C and thiamine for the treatment of severe sepsis and septic shock: a retrospective before–after study. Chest 2017;151(6):1229–38. 97 Georges S et al. Impact of Haemophilus influenzae type b vaccination on the incidence of invasive Haemophilus influenzae disease in France, 15 years after its introduction. Epidemiol Infect 2013;141:1787– 96. 98 Richardson A, Morris DE, Clarke SC. Vaccination in Southeast Asia – reducing meningitis, sepsis and pneumonia with new and existing vaccines. Vaccine 2014;32(33):4119–23.