References
1 Nduka OO, Parrillo JE. The
pathophysiology of septic shock.
In Dellinger R (ed) Critical Care
Clinics. 2009; 25:677–70.
2 Bornay-Verder S, Maréchal
V, Borde C. HMGP1: un lien
inflammation septique et non
septique. RFL 2009;417:59–68.
3 Gonçalves GM, Zamboni DS,
Camara NO. The role of innate
immunity in septic acute kidney
injuries. Shock 2010;34:22–6.
4 Singer M et al. The third
international consensus
definitions for sepsis and
septic shock (Sepsis-3). JAMA
2016;315:801–10.
5 Carrillo-Esper R. Inmunidad
innata, receptors Toll y sepsis. Cir
Ciruj 2003;71:252–8.
6 Tsujimoto H et al. Role of
toll- like receptors in the
development of sepsis. Shock
2008;29(3):315–21.
7 Beutler, B et al. How we detect
microbes and respond to them:
the Toll-like receptors and
their transducers. J Leukoc Biol
2003;74:479.
8 Liu SF, Asrar BM. NF-kB
activation as a pathological
mechanism of septic shock and
inflammation. Am J Physiol
Lung Cell Mol Physiol 2006;290:
622–45.
9 Tracey KJ, Beutler B, Lowery
SF. Shock and tissue injury
induced by recombinant human
cachectin. Science 1986;234:470.
10 McConnell KW, Coopersmith
CM. Pathophysiology of septic
shock: From bench to bedside.
Presse Med 2016;45(4 Pt 2):e93–8.
11 Cavaillon JM, Adib-Conquy M.
The proinflammatory cytokine
cascade. In Marshall JC, Cohen
H (eds) Inmune response in
the critically ill. Springer;2000;
4:37–66.
12 Li J et al. Neutralisation of
peritoneal IL-17A mark- edly
improves the prognosis of
severe septic mice by decreasing
neutrophil infiltration and
proinflammatory cytokines. PLoS
One 2012;7(10):e46506.
13 Nahid MA et al. Regulation
of TLR2-mediated tolerance
and cross-tolerance through
IRAK4 modulation by miR-132
and miR-212. J Immunol
2013;190(3):1250–63.
14 Ricciotti E, Fitzgerald GA.
Prostaglandins and inflammation.
Arterioscler Thromb Vasc Biol
2011;31:986–1000.
15 Tam VC. Lipidomic profiling
of bioactive lipids by mass
spectrometry during microbial
infections. Semin Immunol
2013;25:240–8.
16 Levy BD et al. Lipid mediator
class switching during acute
inflammation: Signals in
resolution. Nat Immunol 2001;2:
612–19.
17 Hermans P, Hazelzet JA.
Plasminogen activator inhibitor
type 1 gene polymorphism and
sepsis. Clin Infect Dis 2005;41:
S453–S458.
18 Zeerleder S et al. TAFI and
PAI-1 levels in human sepsis.
Thromb Res 2006;118:205–12.
19 Ong ST et al. Iron-withholding
strategy in innate immunity.
Immunobiology 2006;211(4):
295–314.
20 Chaible UE, Kaufmann SH. Iron
and microbial infection. Nat Rev
Microbiol 2004;2(12):946–53.
21 Kangelaris KN et al. Increased
expression of neutrophil-related
genes in patients with early
sepsis-induced ARDS. Am J
Physiol Lung Cell Mol Physiol
2015;308(11):L1102–13.
22 Huang X et al. PD-1 expression
by macro- phages plays a
pathologic role in altering
microbial clearance and the
innate inflammatory response to
sepsis. Proc Natl Acad Sci U S A
2009;106(15):6303–8.
23 Belikoff BG et al. A2B
adenosine receptor blockade
enhances macrophage- mediated
bacterial phagocytosis and
improves polymicrobial sepsis
survival in mice. J Immunol
2011;186(4):2444–53.
24 Landelle C et al. Low
monocyte human leukocyte
antigen-DR is independently
asso- ciated with nosocomial
infections after septic
shock. Intensive Care Med
2010;36(11):1859–66.
25 Guo Y et al.The biology of
natural killer cells during sepsis.
Immunology 2018;153(2):
190–202.
26 Boomer JS et al. Immunosup-
pression in patients who die of
sepsis and multiple organ failure.
JAMA 2011;306(23):2594–605.
27 Bedoui S et al. Parallels and
differences between innate
and adaptive lymphocytes. Nat
Immunol 2016;17(5):490–4.
28 Daix T et al. Multicentric
standardized flow cytometry
routine assessment of septic
patient to predict clinical
worsening. Chest 2018; Apr 26.
pii: S0012-3692(18)30647-0. doi:
10.1016/j.chest.2018.03.058.
29 Krautz C et al. Reduced
circulating B cells and plasma
IgM levels are associated with
decreased survival in sepsis
- A meta-analysis. J Crit Care
2018;45:71–5.
30 Zhao Y et al. Predictive
value of soluble programmed
death-1 for severe sepsis and
septic shock during the first
week in an intensive care unit.
Shock 2018;Apr 26. doi: 10.1097/
SHK.0000000000001171.
31 Liu Q et al. Increased
expression of Programmed Cell
Death-1 in regulatory T cells of
patients with severe sepsis and
septic shock: an observational
clinical study. Scand J Immunol
2017;86(5):408–17.
32 Ferguson NR, Galley HF,
Webster NR. T helper cell subset
ratios in patients with severe
sepsis. Intensive Care Med
1999;25(1):106–9.
33 Suzuki K et al. Reduced
Immunocompetent B cells and
increased secondary infection
in elderly patients with severe
sepsis. Shock 2016;46(3):270–8.
34 Bone RC, Grodzin CH, Balk
R. Sepsis: A new hypothesis for
pathogenesis of the disease
process. Chest 1997;112(1):
235–45.
35 Li J et al. Alterations
of T helper lymphocyte
subpopulations in sepsis, severe
sepsis, and septic shock: a
prospective observational study.
Inflammation 2015;38:995–1002.
36 Ferguson NR, Galley HF,
Webster NR. T helper cell subset
ratios in patients withsevere
sepsis. Intensive Care Med
1999;25:106–9.
37 Pruitt JH, Copeland EM 3rd,
Moldawer LL. Interleukin-1 and
interleukin-1 antagonism in
sepsis, systemic inflammatory
response syndrome, and septic
shock. Shock 1995;3:235.
38 Barriere SL, Lowry SF. An
overview of mortality risk
prediction in sepsis. Crit Care Med
1995;23:376.
39 Ince C. The microcirculation is
the motor of sepsis. Critical Care.
2005; 9S13-9
40 Vincent JL. Hemodynamic
support in septic shock. Intensive
Care Med 2001; 27:80–92.
41 VanderMeer TJ, Wang H,
Fink MP. Endotoxemia causes
ileal mucosal acidosis in the
absence of mucosal hypoxia in
a normodynamic porcine model
of septic shock. Crit Care Med
1995;23:1217.
42 Brealey D et al. Association
between mitochondrial
dysfunction and severity and
outcome of septic shock. Lancet
2002;360:219.
43 Hotchkiss RS et al. Cell death.
N Engl J Med 2009;361:1570–83.
44 Brealey D et al. Association
between mitochondrial
dysfunction and severity and
outcome of septic shock. Lancet
2002;360:219–23.
45 Singer M. The role of
mitochondrial dysfunction in
sepsis-induced multi-organ
failure. Virulence 2014;5:66–72.
46 Hotchkiss RS, Nicholson
DW. Apoptosis and caspases
regulate death and inflammation
in sepsis. Nat Rev Immunol
2006;6(11):813–22.
47 Nathan C. Neutrophils and
immunity: challenges and
opportunities. Nat Rev Immunol
2006;6:173–82.
48 Link DC. Neutrophil
homeostasis: a new role for
stromal cell-derived factor-1.
Immunol Res 2005;32:169–78.
49 Tolsma V et al. Sepsis severe
or septic shock: outcome
according to immune status and
immunodeficiency profile. Chest
2014;146(5):1205-13.
50 Adib-Conquy M, Cavaillon JM.
Compensatory anti-inflammatory
response syndrome. Thromb
Haemost 2009;101:36.
51 Rittirsch D, Flierl MA, Ward PA.
Harmful molecular mechanisms
in sepsis. Nat Rev Immunol
2008;8:776–87.
52 Valenzuela-Sánchez F et al.
Personalized medicine in severe
influenza. Eur J Clin Microbiol
Infect Dis 2016;35:893–7.
53 Pool R, Gomez H, Kellum
JA. Mechanisms of organ
dysfunction in sepsis. Crit Care
Clin 2018;34(1):63–80.
54 Hernández G, Teboul
JL. Is the macrocirculation
really dissociated from the
microcirculation in septic
shock? Intensive Care Med
2016;42:1621–4.
55 McConnell KW, Coopersmith
CM. Pathophysiology of septic
shock: From bench to bedside.
Presse Med 2016;45: e93–e98
56 Vincent JL et al. Effects of nitric
oxide in septic shock. Am J Respir
Crit Care Med 2000;161:1781.
57 Brain SD, Grant AD. Vascular
actions of calcitonin gene-related
peptide and adrenomedullin.
Physiol Rev 2004; 84(3):903–34.
58 Valenzuela-Sánchez F et al.
New role of biomarkers: mid-
regional pro-adrenomedullin, the
biomarker of organ failure. Ann
Transl Med 2016; 4(17):329.
59 Khakpour S, Wilhelmsen K,
Hellman J. Vascular endothelial
cell Toll-like receptor path-ways
in sepsis. Innate Immun 2015;21
(8):827–46.
60 Adembri C et al. Sepsis induces
albuminuria and alterations in
the glomerular filtration barrier:
a morphofunctional study in the
rat. Crit Care 2011;15:R277.
61 Xu C et al. TNF-mediated
damage to glomerular
endothelium is an important
determinant of acute kidney
injury in sepsis. Kidney Int
2014;85:72–81
62 Alverdy JC, Laughlin RS, Wu L.
Influence of the critically ill state
16
HHE 2018 | hospitalhealthcare.com
on host–pathogen interactions
within the intestine: gut-derived
sepsis redefined. Crit Care Med
2003;31(2):598–607.
63 Alexander JW et al.
The process of microbial
translocation. Ann Surg 1990;
212:496–510.
64 Langkamp-Henken B, Glezer
JA, Kudsk KA. Immunologic
structure and function of the
gastrointestinal tract. NCP
1992;7:100–5.
65 Carrico CJ et al. Multiple-
organ-failure syndrome. The
gastrointestinal tract: the
“motor’’ of MOF. Arch Surg
1986;121(2):196–208.
66 Akrami K, Sweeney DA.The
microbiome of the critically ill
patient. Curr Opin Crit Care 2018;
24(1):49–54.
67 Rello J et al. Towards precision
medicine in sepsis: a position
paper from the European Society
of Clinical Microbiology and
Infectious Diseases. Clin Microbiol
Infect. 2018; Mar 24. pii: S1198-
743X(18)30221-0. doi: 10.1016/j.
cmi.2018.03.011.
68 Pugin J. Recognition of
bacteria and bacterial products
by host immune cells in sepsis.
In: Vincent JL (ed) Yearbook of
Intensive Care and Emergency
Medicine. Springer-Verlag, Berlin
1996;11.
69 Tolsma V et al. Sepsis severe
or septic shock: outcome
according to immune status and
immunodeficiency profile. Chest
2014;146(5):1205–13.
70 Sørensen TI et al. Genetic
and environmental influences
on premature death in adult
adoptees. N Engl J Med 1988;
318(12):727–32.
71 Shalhub S et al. Variation in
the TLR4 gene influences the
risk of organ failure and shock
posttrauma: a cohort study. J
Trauma 2009; 66(1):115–22.
72 Abu-Maziad A et al. Role
of polymorphic variants as
genetic modulators of infection
in neonatal sepsis. Pediatr Res
2010;68(4):323–9.
73 Toubiana J et al. IRAK 1
functional genetic variant affects
severity of septic shock. Crit Care
Med 2010;38(12):2287–94.
74 Kompoti M et al. Genetic
polymorphisms of innate and
adaptive immunity as predictors
of outcome in critically ill
patients. Immunobiology 2015;
220(3):414–21.
75 Ong ST et al. Iron-withholding
strategy in innate immunity.
Immunobiology 2006;211(4):
295–314.
76 Wang S et al. The role of
increased body mass index in
outcomes of sepsis: a systematic
review and meta-analysis. BMC
Anesthesiol 2017;17(1):118.
77 Vieira AA et al.
Obesity promotes oxidative stress
and exacerbates sepsis-induced
brain damage. Curr Neurovasc
Res 2015;12(2):147–54.
78 Ng PY, Eikermann M. The
obesity conundrum in sepsis.
BMC Anesthesiol 2017;17(1):147.
79 Jacobsson S et al. Leptin
independently predicts
development of sepsis and its
outcome. J Inflamm (Lond) 2017;
14:19.
80 Valenzuela-Méndez B et
al. Pregnancy and influenza
respiratory infection. Implications
of immunological alterations,
clinical repercussion and
current basis of management
and prevention. Ann Virol Res
2016;2(3):1019.
81 Nagamatsu T, Schust DJ. The
contribution of macrophages
to normal and pathological
pregnancies. Am J Reprod
Immunol 2010; 63:460–71.
82 Aagaard-Tillery KM, Silver R,
Dalton J. Immunology of normal
pregnancy. Semin Fetal Neonatal
Med 2006;11:279–95.
83 Muzzio D, Zygmunt M,
Jensen F. The role of pregnancy-
associated hormones in the
development and function
of regulatory B cells. Front
Endocrinol 2014;5:39.
84 Papp E et al. HIV protease
inhibitor use during pregnancy
is associated with decreased
progesterone levels, suggesting
a potential mechanism
contributing to fetal growth
restriction. J Infect Dis
2015;211:10–18.
85 Mehta A. Pulmonary
consequences of alcoholism:
a critical review. OA Alcohol
2013;1(2):17.
86 Simou E, Leonardi-Bee J,
Britton J. The effect of alcohol
consumption on the risk of ARDS:
a systematic review and meta-
analysis.Chest 2018;154(1):58–68.
87 Sarmiento EJ et al. Fine
particulate matter pollution
and risk of community-acquired
sepsis. Int J Environ Res Public
Health 2018; Apr 21;15(4).
88 Bello S et al. Tobacco smoking
increases the risk for death from
pneumococcal pneumonia. Chest
2014;146(4):1029–37.
89 Steiner A et al Nicotine
administration and withdrawal
affect survival in systemic
inflammation models. J Appl
Physiol (1985) 2008; 105(4):
1028–34.
90 Moromizato T et al.
Association of low serum
25-hydroxyvitamin D levels and
sepsis in the critically ill. Crit Care
Med 2014;42(1):97–107.
91 de Haan K et al. Vitamin D
deficiency as a risk factor for
infection, sepsis and mortality
in the critically ill. Crit Care
2014;18(6):660.
92 Ingraham BA, Bragdon B,
Nohe A. Molecular basis of the
potential of vitamin D to prevent
cancer. Curr Med Res Opin 2008;
24(1):139–49.
93 Lasky-Su J et al. Metabolome
alterations in severe critical illness
and vitamin D status. Critical Care
2017;21:193
94 May JM, Harrison FE. Role
of vitamin C in the function
of the vascular endothelium.
Antioxid Redox Signal 2013;
19(17):2068–83.
95 Barabutis N et al.
Hydrocortisone and ascorbic
acid synergistically prevent
and repair lipopolysaccharide-
induced pulmonary endothelial
barrier dysfunction. Chest
2017;152(5):954–62
96 Marik PE et al. Hydrocortisone,
vitamin C and thiamine for the
treatment of severe sepsis and
septic shock: a retrospective
before–after study. Chest
2017;151(6):1229–38.
97 Georges S et al. Impact of
Haemophilus influenzae type b
vaccination on the incidence of
invasive Haemophilus influenzae
disease in France, 15 years after
its introduction. Epidemiol Infect
2013;141:1787– 96.
98 Richardson A, Morris DE,
Clarke SC. Vaccination in
Southeast Asia – reducing
meningitis, sepsis and
pneumonia with new and
existing vaccines. Vaccine
2014;32(33):4119–23.