HHE Respiratory 2019 | Page 12

Figure 2 Left panel: The catheter inside the target lobe with the balloon dilated during the procedure. Right panel: The vapour catheter distally from the target lobe, and the ablated area Bronchoscopic thermal ablation for emphysema is easily applicable in selected patients; the procedure is minimally invasive and the main advantage is fewer adverse effects compared with other endoscopic modalities observed was modest and therefore a higher dose would be possible. 7 Some words regarding the system. The system comprises a vapour generator and a vapour catheter (Figures 1 and 2). The vapour generator is an electronically controlled pressure vessel that generates and delivers precise amounts of energy as a heated vapour through the vapour (balloon) catheter and into a targeted lung segment (Figure 2). The BTVA procedure is performed in an operating room or advanced bronchoscopic suite suite under general anaesthesia with jet-ventilation respiratory model. However; the respiratory model can change from one patient to another. The vapour catheter is introduced through the bronchoscope into the targeted lung segment selected for treatment, where an occlusion balloon is then inflated and the pre-determined vapour dose (10 cal/g-1 tissue) is delivered. A high resolution CAT scan is performed at full inspiration and scans are obtained at pre-treatment, and at three and six months post-treatment. The total air volume of the target lobe is calculated at each time-point, and the change in air volume is related to pre-treatment (lobar volume reduction (LoVR)) and expressed as a percentage of pre-treatment volume. In addition to the imaging efficacy end-points, the BODE (body mass index, airflow obstruction, dyspnoea and exercise capacity) index are calculated for each patient. 8 All patients are monitored in the hospital for a minimum of 24 h following BTVA. After discharge, patients return to their home and have a close follow-up 12 HHE 2019 | hospitalhealthcare.com visits at one, two and four weeks, and then at three and six months. Serious adverse events are defined as those that are either fatal, life- threatening, requiring or prolonging hospitalisation, or resulting in persistent or significant disability or incapacity. Upon follow-up, a number of tests are performed including: laboratory tests that include complete blood count, biochemistry and non-specific inflammatory markers such as erythrocyte sedimentation rate and C-reactive protein (C-RP). Vital signs are also recorded during every visit. The mean procedure time is usually 29 min (range 12–58 min). Procedures are usually well-tolerated with most of the patients being discharged from the hospital within 24 hours. Until now there are no data for patients that required mechanical ventilation beyond the procedure time. The average lobe volume loss from baseline in the treated lobes was 717.6 ± 78.8ml at three months and 715.5 ± 99.4ml at six months (p=0.001). This volume represents a 48% reduction in lobar volume in a recent reported study. It has been observed that the volume differences at six months are similar to those observed at three months. Compensatory hyperinflation of the contralateral lung has not been observed mainly due to the slow process of remodelling. Current data indicate that mean ± SE improvement in FEV1 has been observed at 139.1 ± 27.2ml (17%) at three months and 140.8 ± 26.3ml (17%) at six months (p=0.001). The mean ± SE improvement