HHE 2018 | Page 164

radiology and imaging sponsored New evidence for digital mammography plus tomosynthesis Digital breast tomosynthesis, the latest generation technology in breast imaging, uses a three-dimensional, limited-angle tomographic breast imaging technique to provide multiple projection views, thus reducing interference from overlapping tissues From GE Healthcare Breast cancer accounts for one in three cancers in women throughout the European Union (EU), making it the leading cancer site among women on the continent. With a mean breast cancer incidence rate of 70.7, western Europe also has one of the highest incidences of breast cancer in the world, accounting for 11 of the top 20 countries. 1–3 Screening is the mainstay of breast cancer detection, with numerous studies finding that early detection translates into substantially reduced mortality rates. 4–6 However, current technologies have several shortcomings. The most common is false-positive recalls, leading to unnecessary testing and biopsy procedures. This is particularly true of women with dense breasts, which can hide a lesion, and of those with superimposition of fibroglandular tissue, which can be misinterpreted as a lesion. 7,8 Getting a false positive diagnosis causes unnecessary anxiety and fear, and women who receive a false positive result are more likely to delay their next mammogram. 9 Digital breast tomosynthesis Digital breast tomosynthesis (DBT), the latest generation technology in breast imaging, uses a three-dimensional, limited-angle tomographic breast imaging technique to provide multiple projection views, thus reducing interference from overlapping tissues. These thin slices (at 1-mm spacing) are then reconstructed to provide the three-dimensional view. Numerous observational and clinical studies attest to the improved specificity DBT offers, whether used as an adjunct with digital mammography (DM) or synthetic 2D mammography, or as a stand-alone screening technique, as well as its ability to reduce recall rates while improving cancer detection, particularly for invasive cancers. 8,10–14 The European Society of Breast Imaging (EUSOBI) in its most recent position paper on screening mammography concluded that DBT is set to become “routine mammography” in the screening setting in the near future, but also noted there are several unanswered questions around the technology. 15 Areas of focus for current research include data on the challenges of implementing DBT-based screening programs; rates of overdiagnosis; cost effectiveness; and, perhaps most important, the ability of DBT to improve prognosis, mortality, and morbidity. 16 164 HHE 2018 | hospitalhealthcare.com One of the first prospective, randomised trials assessing the use of DBT in the screening context is the Reggio Emilia Tomosynthesis Randomised Trial. The study is being conducted at screening centres in northern Italy, and is designed to look at interval cancers, or those detected between screening exams, and cumulative incidence of advanced cancers. 17 Preliminary results published recently provide additional evidence regarding the benefits of DBT + DM versus DM alone. This two-arm, test-and- treat prospective randomised trial compared DM plus DBT (experimental arm) with DM alone (control) in 19,560 women aged 45–70 who had previously received one round of screening and had no familial risk of breast cancer. All screening mammograms were conducted using GE mammography equipment, including tomosynthesis. Figure 1 (refer to the next page) highlights the study design and randomisation. The authors reported a detection rate 90% higher in the DBT + DM arm than in the control arm (8.6 per 1000 women screened vs 4.5 per 1000 screened), with similar recall rates. The detection rate was higher for ductal carcinoma in situ (DCIS) than invasive cancer; for invasive cancers <10mm (84% increase) and ≥10–20mm