global Laptop and motherboard repair tutorial | Page 81

Knowing how the initial failure occurred is very beneficial to helping to locate the fault. If you know that the problem is related to a lightning storm and the power was going in and out, you can direct the diagnosing towards the power input and leading tracks. This would include all components on those paths, like voltage regulators, tantalum capacitors, resistors, diodes and related. Also you would determine from the schematics sheets, the proper testing voltage/amp/current of all those components. Let us say that that did in fact happen to the laptop in question with the fault. You would begin by making sure the AC Adapter is properly functioning. Moving on, you would begin a visual and audio inspection of the motherboard. Your audio inspection: Listening closely to a faulty motherboard will sometimes reveal the faults location, or at least show the end result of a blown series of components. You will sometimes be able to hear blown components making a high pitched buzzing noise, or it will sometimes be a beeping noise, then sometimes it can also be clicking noises. Your visual inspection: The visual inspection is the most important part of motherboard testing. It can also be the difference in hours of testing as opposed to directly noticing the issue. Printed circuit boards (PCBs) are vulnerable to environmental influences; for example, the traces are corrosion-prone and may be improperly etched leaving partial shorts, while the vias may be insufficiently plated through or filled with solder. The traces may crack under mechanical loads, often resulting in unreliable PCB operation. Residues of solder flux may facilitate corrosion; those of other materials on PCBs can cause electrical leaks. Polar covalent compounds can attract moisture like antistatic agents, forming a thin layer of conductive moisture between the traces; ionic compounds like chlorides tend to facilitate corrosion. Alkali metal ions may migrate through plastic packaging and influence the functioning of semiconductors. Chlorinated hydrocarbon residues may hydrolyze and release corrosive chlorides; these are problems that occur after years. Polar molecules may dissipate highfrequency energy, causing parasitic dielectric losses. Above the glass transition temperature of PCBs, the resin matrix softens and becomes susceptible contaminant diffusion. For example, polyglycols from the solder flux can enter the board and increase its humidity intake, with corresponding deterioration of dielectric and corrosion properties. Multilayer substrates using ceramics suffer from many of the same problems. Conductive anodic filaments (CAFs) may grow within the boards along the fibers of the composite material. Metal is introduced to a vulnerable surface typically from plating the vias, then migrates in presence of ions, moisture, and electrical potential; drilling damage and poor glass-resin bonding promotes such failures. The formation of CAFs usually begins by poor glassresin bonding; a layer of adsorbed moisture then provides a channel through which ions and corrosion products migrate. In presence of chloride ions, the precipitated material is atacamite; its semi-conductive properties lead to increased current leakage, deteriorated dielectric strength, and short circuits between traces. Absorbed glycols from flux residues aggravate the problem. The difference in thermal expansion of the fibers and the matrix weakens the bond when the board is soldered; the lead- free solders which require higher soldering temperatures increase the occurrence of CAFs. Besides this, CAFs depend on absorbed humidity; below a certain threshold, they do not occur. Delamination may occur to separate the board layers, cracking the vias and conductors to introduce pathways for corrosive contaminants and migration of conductive species. A lighted magnifying glass or better yet a microscope would help you with the visual inspection to bring your field of view up close and allowing you to look for faults. You can buy a headset