Ginisiluwa January 01 | Page 204

More to Explore 189 Shannon bypassed others’ attempts to work with specific kinds of information—text, numbers, images, sounds, etc. He also decided not to work on any single way of transmitting information—along a wire, sound waves through the air, radio waves, microwaves, etc. Instead, Shannon decided to focus on a question so basic, no one had thought to study it: What is information? What happened when information traveled from sender to receiver? Shannon’s answer was that information consumed energy and, upon delivery, reduced uncertainty. In its simplest form (an atom or a quantum of energy), information answered a simple yes/no question. That answer reduced (or eliminated) uncertainty. Flip a coin. Will it be heads or tails? You don’t know. You are uncertain. When it lands, you get information: yes or no. It was heads or it wasn’t. Uncertainty is gone. That’s information. Shannon realized that he could convert all information into a long string of individual simple yes/no bits of information and that electrical circuits were ideal for processing and transmitting this kind of digital information. In this way, he converted information—in any form—into a string of digital yeses and nos: ones and zeros. Shannon was then able to apply the laws of physics to information streams. He showed that there was a limit to the amount of information that could be pushed through any communications channel—just as there was a limit to the amount of water that can be pushed through a hose no matter how great the pressure. He also derived a mathematical equation to describe the relationship between the range of frequencies available to carry information and the amount of information that can be carried. This became what we call “bandwidth.” Shannon’s discovery made information as physical and easy to work with as water flowing through a pipe or air pumped through a turbine. In this way, Shannon discovered what information is and opened the door to our modern digital age. Fun Facts: There are 6,000 new computer viruses released every month. More to Explore Adler, Robert. Science Firsts. New York: John Wiley & Sons, 2003. Horgan, John. “Claude Shannon: Unicyclist, Juggler, and Father of Information Theory.” Scientific American 262, no. 1 (1995): 22–22B. Liversidge, Anthony. “Claude Shannon.” OMNI (August 1997): 61. Riordan, Michael. Crystal Fire: The Birth of the Information Age. New York: W. W. Norton, 1997. Shannon, Claude. The Mathematical Theory of Communication. Urbana: University of Illinois Press, 1999. Sloane, N., and Aaron Wyner. Claude Elwood Shannon: Collected Papers. Piscataway, NJ: IEEE Press, 1997.