Ginisiluwa January 01 | Page 164

More to Explore 149 home for another full year of independent study and a second paper, a review of the mathematical implications of Einstein’s relativity, before he was offered a lecturing position at Göttingen University. However, the only available research funding was designated for the study of the vibrational energy in crystals. Deeply disappointed, feeling excluded from the grand hunt for the structure of the atom, Born launched his study of crystals. For five years Born and two assistants collected, grew, sliced into paper-thin wedges, studied, measured, and analyzed crystals. In 1915 Born shifted to the University of Berlin to work with physics giant Max Planck. Planck and Einstein were at the hub of the race to unravel and understand the subatomic world. Born brought his mathematical superiority and his understanding of crystals to aid their efforts. It was a classic case of finally being in the right place at the right time with the right background. Theories abounded to explain the peculiar behavior of subatomic particles. But no one was able to write down the mathematics that proved and described those theories. The problem had mystified the greatest minds in the scientific world for almost 20 years. It occurred to Born that the quantum phenomena physicists found so troubling in electrons looked remarkably similar to the behavior of the crystals he had studied for five years. In 1916 Born started to apply what he had learned with crystals to the immense and complex numerical problem that surrounded subatomic particles. The work stretched the available mathematical tools to their limits. The effort extended over nine years of work on blackboards, on note pads, and with slide rules. In 1925 Born completed work on “Zur Quantenmechanik,” or “On Quantum Mechanics.” The phrase had never been used before. The paper exploded across the scientific world. It clearly, mathematically, laid out the fundamentals that Einstein, Planck, Dirac, Niels Bohr, Hermann Minkowski, Heisenberg, and others had talked about. It concretely explained and described the amazing world of subatomic particles. “Quantum mechanics” became the name of the new field of study that focused on a quantitative description of subatomic phenomena. Max Born became its founder. Fun Facts: In the bizarre quantum world, many of our “normal” laws do not apply. There, objects (like electrons) can be (and regularly are) in two different places at once without upsetting any of the laws of quantum existence. More to Explore Baggott, Jim. The Meaning of Quantum Theory. New York: Oxford University Press, 1998. Born, Max. Physics in My Generation. London: Cambridge University Press, 1996. Clive, Barbara. The Questioners: Physicists and the Quantum Theory. New York: Thomas Crowell, 1995. Gribbin, John. In Search of Schrodinger’s Cat: Quantum Physics and Reality. New York: Bantam Books, 1984. Keller, Alex. The Infancy of Atomic Physics. Oxford: Clarendon Press, 1993. Tanor, Joseph, ed. McGraw-Hill Modern Men of Science. New York: McGraw-Hill, 1986. Wasson, Tyler, ed. Nobel Prize Winners. New York: H. W. Wilson, 1987.