GeminiFocus May 2014 | Page 8

Figure 4. An Earth-sized planet crossing in front of a Sun-like star (left) and an M dwarf like Kepler-186 (right). The amount of starlight blocked by an Earth-sized planet in the habitable zone is proportionately greater for an M dwarf than a Sun-like star, creating a larger dip in the transit light curve (bottom) and therefore making them easier to detect. Credit: Wendy Stenzel close that it dilutes the signal, or if the binary stars barely eclipse each other, then these are other scenarios that could cause a small dip in the light curve and be misinterpreted as a planetary eclipse. Kepler-186 was observed using the Differential Speckle Survey Instrument (DSSI) on Gemini North and using the NIRC2 camera on the Keck-II telescope. Gemini and Keck each imaged Kepler-186 to different degrees of M Dwarfs: Prime Targets in the Search for Habitable Worlds M dwarfs (stars with 0.1-0.5 times the mass of the Sun) are excellent targets in the search for habitable worlds. Planets in the habitable zones of M stars are easier to detect than planets in the habitable zones of Sun-like stars due to their shorter orbital periods and frequency of transits detected. The proportion of starlight that they block is also greater (see Figure 4) so the transit depths are deeper. M-dwarfs are also very abundant, comprising about three quarters of all main sequence stars in our galaxy. They also evolve very slowly in luminosity, thus their habitable zones remain stable for billions of years. Furthermore, planets around M dwarf hosts may (ultimately) be imaged more easily due to higher contrast between the planet and the star. M Dwarfs have long been thought to be unsuitable hosts for habitable planets due to the proximity of planets in the habitable zone and their vulnerability to the stellar environment. M stars are known to be highly active early in their life, often producing giant and frequent flares which could scorch planets nearby. They also gravitationally interact with the planets, causing tides that heat the planet and cause their rotations to be ‘tidally locked,’ which means one side always faces the star and the other side faces the cold open space, much like our moon is tidally locked with the Earth. Fortunately, Kepler-186f orbits a star that is on the larger end of the M dwarf mass range and is at a large enough distance where it could very well have escaped all of these complications to habitability. Regardless, there have been many recent studies that have shown ways around each of these challenges, and there isn’t any one factor that precludes M dwarf planets from being habitable. 6 GeminiFocus April 2014