Garden & Greenhouse October 2018 Issue | Page 36

ing of the tissues, as happens with most other types of plants. In epiphytic orchids, the ve- lamen covering th e roots instantly absorbs whatever water it comes in contact with. The water then enters the root, crosses the outer epidermis and moves toward the xylem (water-conducting tissue) by moving in the spaces between the cells or actually through them. Once the water reaches the xylem, which is a series of open tubes within the stele (that “string” that’s left when a root dies and rots), it moves quickly upward, continuing through xylem branches and into the tiny veins in the leaves, and ultimately into the cells themselves through os- mosis. In order to keep the whole thing working, it is important that water keeps moving in an unbroken fl ow. That is helped by the fact that water molecules are cohesive and bind together. Those bonds are strong enough to keep the molecules stuck together even as they travel up to great heights (think about trees!). However, if the transpirational pull becomes greater than the water supply absorbed by the roots, cohesion is broken and an air bubble, or embo- lism, forms. Unless the bonds can be reestablished relatively quickly (sometimes water will enter the xylem from surrounding cells and fi ll the gap and force the air to dissolve), the fl ow of water is perma- nently interrupted. Water can be diverted around the embolism by moving later- ally into other xylem tubes, but if too many embolisms are present the part of the plant above them will die. Fortunately, that is less common in orchids, as the rate of water transfer within the plant is much slower than that of many annuals and perennials, and the transpiration rate has been reduced through some evolutionary metabolic modi- fi cations How Culture Affects Transpirational Pull The obvious reason for a problem is a lack of watering and infrequent watering. If you tend to water infrequently, or insuffi ciently, the roots can- not take up as much water as they can when they are watered frequently. Even if the individual par- ticles in the potting medium stay wet, that does not mean they can easily transfer it to the roots. Such a practice tends to “strain” the cohesivity of the water already within the plant, slowing the whole growth process. Likewise, growing in too dry of an environ- ment accelerates the transpirational fl ow, which can outstrip the roots’ ability to replace the water, lead- ing to desiccation and wilting, usually seen fi rst in fl owers. Probably the least obvious cultural issue is ex- cessive humidity. Yes, orchids have evolved, in many cases, to live in high-humidity environments, but if the relative humidity is consistently very high, the rate of evaporation of water from the leaf sto- mata is stifl ed, which slows the transpiration process and ultimately slows the growth of your plants. Summing this up, for optimal growth of your plants, water should be applied frequently and copiously to the airy root system, and the relative humidity should be kept moderately high, but not saturated. GG Ray Barkalow has been growing orchids for over 45 years, and owns First Rays, which offers horticultural products to the hobby grower. He may be contacted at raybark@ fi rstrays.com and you can visit his website at FirstRays.com. wWw. gardenandgreenhouse .neT Visit us online for more great articles, profiles, and products 36 www.GardenandGreenhouse.net September 2018