Forum for Nordic Dermato-Venereology No 3, 2019 Telemedicine | Page 17
Carsten Sauer Mikkelsen, Kristian Bakke Arvesen, Peter Bjerring and Luit Penninga – Artificial Intelligence in Dermatology
9. Dinnes J, Deeks JJ, Saleh D, Chuchu N, Bayliss SE, Patel L, et al.
Reflectance confocal microscopy for diagnosing cutaneous mela-
noma in adults. Cochrane Database Syst Rev 2018; 12: CD013190.
10. Ferrante di Ruffano L, Takwoingi Y, Dinnes J, Chuchu N, Bayliss
SE, et al. Computer-assisted diagnosis techniques (dermoscopy and
spectroscopy-based) for diagnosing skin cancer in adults Cochrane
Database Syst Rev 2018; 12: CD013186.
11. Chuchu N, Dinnes J, Takwoingi Y, Matin RN, Bayliss SE, Davenport
C, et al. Teledermatology for diagnosing skin cancer in adults.
Cochrane Database Syst Rev 2018; 12: CD013193.
12. Ferrante di Ruffano L, Dinnes J, Deeks JJ, Chuchu N, Bayliss SE, et
al. Optical coherence tomography for diagnosing skin cancer in
adults. Cochrane Database Syst Rev 2018; 12: CD013189.
13. Rajpara SM, Botello AP, Townend J, Ormerod AD. Systematic review
of dermoscopy and digital dermoscopy/artificial intelligence for
the diagnosis of melanoma. Br J Dermatol 2009; 161: 591–604.
14. Burroni M, Corona R, Dell’Eva G, Sera F, Bono R, Puddu P, et al.
Melanoma computer-aided diagnosis: reliability and feasibility
study. Clin Cancer Res 2004; 10: 1881–1886.
15. Fuller C, Cellura AP, Hibler BP, Burris K. Computer-assisted diagno-
sis of melanoma. Semin Cutan Med Surg 2016; 35: 25–30.
16. Boldrick JC, Layton CJ, Nguyen J, Swetter SM. Evaluation of digital
Forum for Nord Derm Ven 2019, Vol. 24, No. 3
dermoscopy in a pigmented lesion clinic: clinician versus computer
assessment of malignancy risk. J Am Acad Derm 2007; 56: 417–421.
17. 17 Jerant AF, Johnson JT, Sheridan CD, Caffrey TJ. Early detection
and treatment of skin cancer. Am Fam Phys 2000; 62: 381–382.
18. Landini G. Fractals in microscopy. J Microsc 2011; 241: 1–8.
19. Eadie LH, Taylor P, Gibson AP. A systematic review of comput-
er-assisted diagnosis in diagnostic cancer imaging. Eur J Radiol
2012; 81: e70–e76.
20. Li Y, Shen L. Skin Lesion Analysis towards melanoma detection
using deep learning network. Sensors (Basel) 2018; 18: pii: E556.
21. Stoecker WV, Wronkiewiecz M, Chowdhury R, Stanley RJ, Xu J,
Bangert A, et al. Detection of granularity in dermoscopy images
of malignant melanoma using color and texture features. Comput
Med Imaging Graph 2011; 35: 144–147.
22. Fabbrocin G, Betta G, Leo GD, Liguor C, Paolillo A, Pietrosanto A,
et al. Epiluminescence image processing for melanocytic skin lesion
diagnosis based on 7-point check-list: a preliminary discussion on
three parameters. Open Derm J 2010; 4: 110–115.
23. Stoecker WV, Gupta K, Stanley RJ, Moss RH, Shrestha B. Detection
of asymmetric blotches (asymmetric structureless areas) in dermos-
copy images of malignant melanoma using relative color. Skin Res
Technol 2005; 11: 179–184.
T heme I ssue : T eledermatology
101