ENCYCLOPÉDIE DE LA RECHERCHE SUR L’ALUMINIUM AU QUÉBEC 2013 | Page 47

NOUVEAUX PRODUITS ET MATÉRIAUX À BASE D'ALUMINIUM NEW ALUMINIUM BASED PRODUCTS AND MATERIALS Prediction of elevated temperature flow behavior of 1xxx alloys with various iron and silicon levels LA PRÉDICTION DU COMPORTEMENT D'ÉCOULEMENT À TEMPÉRATURE ÉLEVÉE La prédictionDES comportement À DIFFÉRENTES TENEURS EN FER ET EN SILICIUM du ALLIAGES 1XXX d'écoulement à 45 température élevée des alliages 1xxx àBEHAVIOR AT HIGH TEMPERATURE OF 1XXX PREDICTION OF FLOW différentes teneurs en fer WITH silicium ALLOYS et en DIFFERENT IRON AND SILICON CONCENTRATIONS Mohammad Shakiba, X.-Grant Chen NSERC/Rio Tinto Alcan Industrial Research Chair in Metallurgy of Aluminum Transformation, UQAC Introduction objectives Commercially pure aluminum exhibits higher strength and work hardening compare to high purity aluminum. Fe and Si play main role on strength and work hardening of 1xxx alloys and the contribution from the other trace impurities is negligible. Therefore, analysis the effect of iron and silicon on hot deformation behavior is the primary concern in this regard. Furthermore, finding a way to predict deformation behavior at various Fe and Si levels could be very helpful for designer of forming processes and permit significant reductions in the design cost. Studying the hot deformation behavior of 1xxx alloys with systematic variation on the Fe (0.10.7) and Si (0.1-0.25) contents.  Developing constitutive equations correlating flow stress, deformation temperature and strain rate considering compensation of chemical composition. Experimental Alloys composition Alloy Al-0.1Fe-0.1Si Fe 0.12 Si 0.10 Casting Fe/Si Uniaxial hot compression test Homogenization Temperature (oK) 1.20 Strain rate (s-1) Al-0.3Fe-0.1Si 0.28 0.10 2.80 623 0.01 Al-0.5Fe-0.1Si 0.49 0.10 4.90 Al-0.7Fe-0.1Si 0.68 0.11 6.18 673 0.1 Al-0.1Fe-0.25Si 0.13 0.24 0.30 0.24 Al-0.5Fe-0.25Si 0.52 0.26 2.00 5. Chemical composition effect 3. Effect of silicon level Fig.1. True stress-true strain curves of Al-0.1Fe-0.1Si alloy at various strain rates (a) 0.01 s-1, (b) 0.1 s-1, (c) 1 s-1 and (d) 10 s-1. Fig.4. Relationship between (a) α (b) Q, (c) n, (d) lnA and iron level by polynomial fit for Al-Fe-0.1 or 0.25Si. Fig.3. Effect of silicon on flow stress at strain of 0.4,   (a)Al-0.1Fe;  = 0.01 s-1, (b) Al-0.1Fe;  = 10 s-1, (c) Al  0.5Fe,  = 0.01 s-1 and (d) Al-0.5Fe;  = 10 s-1.   B0  B1Fe  B2 Fe 2 4. Constitutive equations Arrhenius equation    Af ( ) exp(  Hyperbolic-sine law equation Q  C0  C1Fe  C2 Fe Zener-Holloman parameter  Z   exp( Activation energy Q  R[ 2 n  D0  D1Fe  D2 Fe 2 Q ) RT    A[sinh( )]n exp(  Fig.2. Effect of iron on flow stress at strain of 0.4, (a)Al  0.1Si, = 0.01 s-1, (b) Al-0.1Si;  = 10 s-1, (c) Al-0.25Si,    = 0.01 s-1 and (d) Al-0.25Si;  = 10 s-1. - Results 1. Flow stress behavior 2. Effect of iron level 10 823 1.25 1 773 0.54 Al-0.3Fe-0.25Si 723 ln A  E0  E1Fe  E2 Fe 2  1   Z 1/ n  Z 2 / n 1/ 2       ln       1     A   A       Z   exp( Q ) RT Q ) RT Q )  A[sinh( )]n RT   ln   ln[sinh( )] ]T [ ]  RnS  ln[sinh( )] (1 / T ) Mohammad Shakiba X.-Grant Chen Chaire industrielle de recherche CRSNG/Rio Tinto Alcan sur les nouvelles avenues en métallurgie de la transformation de l’aluminium (CIMTAL), Université du Québec à Chicoutimi Fig.5. Correlation between the experimental and predicted flow stress for; Al-0.5Fe-0.1Si. Conclusions Increasing the iron level from 0.1 to 0.7 and 0.1 to 0.5 in low and high silicon containing alloys produced 10-32% and 7-16% increase in flow stress over the range of deformation conditions at strain of 0.4. Furthermore, raising the silicon level from 0.1 to 0.25 wt.% increased flow stress by 7-14% and 4-8% in Al-0.1Fe and Al-0.5Fe alloys respectively.  The final results show the developed constitutive equations give an excellent estimate for the flow stress of all the investigated alloys. Journée des étudiants – REGAL The hot deformation behavior of Al-Fe-Si alloys containing various amounts of Le comportement en déformation à chaud des alliages Al-Fe-Si contenant différents pourcentage en fer et en silicium a été étudié par le biais des essais de 22 Octobre 2013 compression à chaud isothermes réalisées à différentes températures et vitesses de déformation. La contrainte d’écoulement augmente avec la teneur en fer ou en silicium pour l'ensemble des conditions de déformation. Les courbes contraintesdéformations réelles ont été utilisées pour développer les équations constitutives des alliages Al-Fe-Si. Cependant, l’influence de la température et de la vitesse de déformation sur le comportement des alliages Al-Fe-Si a été présentée par le paramètre de Zener-Holloman. L'effet de la composition chimique a été incorporé dans l'analyse constitutive en tenant compte de ses effets sur les constantes du matériau. La comparaison entre la contrainte d’écoulement calculée et mesurée montre que les équations constitutives proposées donnent une prévision précise de la contrainte d'écoulement des alliages Al-Fe-Si. iron and silicon was studied by isothermal hot compression tests conducted at different temperatures and strain rates. The flow stress raised by increasing either the iron or silicon content for all the deformation conditions. The measured true stress- true strain curves were employed to develop constitutive equations for AlFe-Si alloys. However, the influences of temperature and strain rate on deformation behavior were presented by Zener-Holloman parameter. The effect of chemical composition was incorporated in the constitutive analysis by considering its effect on material constants. Comparison between calculated and measured flow stresses shows that the proposed constitutive equations give an ac