ENCYCLOPÉDIE DE LA RECHERCHE SUR L’ALUMINIUM AU QUÉBEC 2013 | Page 25

PRODUCTION DE L’ALUMINIUM Pondération de la réaction chimique et du ALUMINIUM PRODUCTION transport de masse sur la réactivité anodique au CO2 à 960OLA RÉACTION CHIMIQUE ET DU TRANSPORT PONDÉRATION DE C 23 Estimation of the weightDE chemical reactivity and of MASSE SUR LA RÉACTIVITÉ ANODIQUE AU CO2 À 960°C mass transport ESTIMATION OF THE WEIGHT anode on the overall CO2 reactivity of OF CHEMICAL REACTIVITY AND MASS at 960OC TRANSPORT ON THE OVERALL CO2 REACTIVITY OF ANODE AT 960°C F. Chevarin1,2, H. Alamdari1,2, G. Aryanpour1,2, D. Picard2, M. Fafard2, D. Ziegler3 1Department of Mining, Metallurgical and Materials Engineering, 1065 avenue de la Médecine Université Laval, Québec, QC, G1V 0A6,2 Canada Auteur 1, Author Industrial Research Chair MACE3 and Aluminium Research Centre – REGAL 1 Département et G1V 0A6, 1 Université Laval, Québec, QC,Institution Canada 3Alcoa Primary Metals, Alcoa Technical Center, 100 Technical Drive, Alcoa Center, PA,15069-0001, USA 2NSERC/Alcoa 2 department and Institution 2. Objectives Introduction Carbon anode used in Hall-Héroult electrolysis process is subject to carboxy 1st: To confirm the chemical regime of carbon gasification. The rate of the reaction between carbon and CO2 is affected by mass mass loss under CO2 at 960 OC; transport through anode pores. A concentration gradient is created through anode. To 2nd: To evaluate the weight of chemical quantify the effect of mass transport limitations on the chemical reaction, the mass loss reactivity versus the reactivity under mass of carbon powder bed, determined in chemical regime (without mass transport limitations), has been compared with mass loss under [CO2] limitations. transport limitations. Problematic How the CO2 anode reactivity is decreased by the mass transport ? Experimental procedure Mass loss versus time at different temperatures CO2 reactivity test, TGA with sleeve (CO2 flow : 100 ml/min) Anode milling at high energy Anode compacting and baking 1,00 Anode particles (27 µm) 0,40 ln m(t) (mg) Baked anode Ln m(t) vs Reaction time of anode powder (2 mg) on fixed bed reactor with CO2 at different temperatures in a TGA Apparatus 0,70 0,10 -0,20 -0,50 -0,80 860 °C -1,40 910 °C -0.0047x + 0.6931 -0.019x + 0.6931 R² = 0.9927 R² = 0.9966 -1,10 0 20 40 935 °C 960 °C -0.0094x + 0.7419 -0.0283x + 0.6931 R² = 0.9986 R² = 0.9973 60 80 Reaction time (min) 985 °C -0.0354x + 0.8755 R² = 0.9948 100 120 Results Kinetic constant vs Temperature of anode powder (≈ 2 mg, 27 µm) with CO2 on TGA apparatus 0,80 0,82 0,84 0,86 0,88 0,90 -3,5 ln k = -24.320 x 1000/T + 16.060 R² = 0.979 ln k (1/min) -4,0 -4,5 Arrhenius