ENCYCLOPÉDIE DE LA RECHERCHE SUR L’ALUMINIUM AU QUÉBEC 2013 | Page 52

50 NOUVEAUX PRODUITS ET MATÉRIAUX À BASE D'ALUMINIUM NEW ALUMINIUM BASED PRODUCTS AND MATERIALS CARACTÉRISATION DE COMPORTEMENT À L'USURE D'Al-7075 RECOUVERT D'Al-Si NANOSTRUCTURÉ PAR INDENTATIONS NANO-IMPACT CHARACTERIZATION OF WEAR BEHAVIOUR IN NANOSTRUCTURED Al-Si CLADDED ON Al-7075 SUBSTRATE USING NANO-IMPACT INDENTATIONS Characterization of wear behaviour in nanostructured Al-Si cladded on Al-7075 using nano-impact indentations Abhi Ghosh, J. Arreguin, M. Brochu and J. Milligan INTRODUCTION OBJECTIVE • Nano-impact is a performance testing tool capable of measuring and tracking deformation at nanoscopic level under dynamic stress conditions. Due to the dynamic nature of the stresses occurring during the erosion/sliding, the wear behavior of a material is generally tested under dynamic conditions. • Aluminium alloys such as Al-7075 have good strength and ductility, however, they possess poor surface properties. For this reason, wear resistant materials such as Al-Si alloy are cladded to Al-7075 to obtain a material system possessing optimum bulk properties along with excellent surface properties. • Spherical nano-sized Si precipitates embedded in nano-sized grains of Al matrix form a perfect resistance towards material removal, and hence towards sliding wear [1]. • Perform nano-impact tests for a range of loads on Al-7075 and Al-Si. • Understand the deformation behaviour at low loads, where geometrically necessary dislocations (GND) dictate the deformation mechanism. • Comparision of deformation and wear behaviour for nano-impact and nano-indentation for Al-Si coating and AA-7075 substrate. METHODOLOGY 1. Materials processing [1]: Cryomillig: 4 hrs at 196 oC Al-Si Powder Al-Si powder placed on top of Al7075 substrate T6S Heat treatment: 1 h at 475 oC, Stretch, 24 h at 125 oC Wrought Al7075 2. Resultant micro-structure: Spark Plasma Sintering: 5 mins at 450 oC 3. Nano-impact testing: Coating-substrate crosssection: [1] Nano-impact tester Indenter and sample positioning Al-Si Type Interface Al-7075 No. of Impacts Load Time Samples Impact/ Dynamic hardness 1 10 mN to 100 mN 300 ms Al-Si and Al7075 RESULTS & DISCUSSION Nano-impact: Nix-Gao model and Geometrically Necessary Dislocations (GND) Hardness vs. Residual Depth for Al-Si and Al-7075 GND Zone in low load indents [2] Micrographs of indents at 100 mN 0,4 PRIX AXE 2 // AXE 2 AWARD Nano-Impact Hardness (GPa) 0,35 Al-Si 0,3 0,25 Al-7075 Al-Si 0,2 0,15 0,1 Al-7075 0,05 0 2500 3500 4500 5500 6500 7500 8500 9500 Residual Depth (nm) Comparision with Micro-hardness results: Plasticity index and wear resistance: Effect of nanostructuring Hardness by nano-impact and nano-indentation [3]: Micro-hardness: Hardness vs. Depth Static vs. Dynamic indentations: Hardness comparision Static and Dynamic Plasticity Index: 140 120 Vickers Hardness Abhi Ghosh Javier Arreguin-Zavala Mathieu Brochu Jason Milligan Université McGill • Hardness vs. Depth curve for both Al-Si and Al7075 almost coincide, indicating them to have the same resistance to dynamic stress. • Ho, or Hardness at statistically stored dislocations were same for both materials. • Nix-Gao model: It states that a linear relationship occurs between hardness and residual depth. Nix-Gao model does not apply for low loads at nano-impact test [2]. • GND zone: For the GND zone, an inverse relation between hardness and depth applies. Hence, hardness increased with decrease in indentation depth for nano-impact tests. Al-Si 100 80 Al-7075 Al-Si 60 40 20 0 0 5 10 15 20 Residual Depth (µm) 25 30 35 • GND zone: For larger static loads, the Nix-Gao model applies. Microhardness values do not change with increasing loads. • Micro-Hardness values for Al-Si and Al-7075 are almost equal. Nano-Impact Hardness, DHo Nano-Indentation Hardness, Ho ~0.12 GPa 1.3 GPa Al-7075 0.11-0.13 GPa 0.94 GPa • At static loading, nano-structured Al-Si is harder than Al-7075. At dynamic loading, the hardness is approximately same for Al-Si and Al-7075. • Decrease in hardness at dynamic condition is due to the lack of dislocation generation and hence lack of strain hardening at high strain rate deformation. Al-Si DHo/E using Nano-impact Ho/E using Nano-indentation 0.150 Al-7075 0.00137 0.102 • H/E or Plasticity Index dictates the sliding wear resistance. • Dynamic Stress conditions during sliding wear is represented more appropriately by DHo/E or Dynamic Plasticity Index. • Brittle Nano-grained Al matrix further embrittles due to high strain rate deformation. Surface cracks cause enhancement of wear due to “sink” and “pop-in” behaviour of the Si precipitates. Increased strain-rate is the cause for a decreased wear-resistance of the Al-Si coating [1]. REFERENCES SUMMARY •Dynamic Hardness vs. Depth profile for Al-Si and Al-7075 coincide, with DHo ~ 0.12 GPa. •Decreased wear resistance of nanostructured Al-Si at dynamic conditions; surface cracks in Al matrix are evident from indent micrographs. •Nano-impact testing was used to predict the dynamic response of Al-Si and Al-7075 during sliding wear. L’utilisation d’un équipement d’indentation à nano-incidence MicroMaterials™ a permis d’étudier le comportement à la déformation de la surface d’un revêtement d’Al-Si nano-structuré et du substrat Al-7075 sous-jacent. Afin de mener cette étude, des tests ont été effectués à faible charge, à partir de 10 mN, où la déformation est uniquement liée aux dislocations géométriquement nécessaires (GND). L'augmentation des charges conduit à une stabilisation de la dureté, résultant en une valeur de dureté Ho dans la zone de dislocations statistiquement stockées. Les valeurs Ho obtenues à partir de nano-impacts se sont avérées beaucoup plus faibles que les valeurs obtenues à partir de la nano-indentation dans des conditions de chargement statique. La diminution des valeurs de dureté à haut taux de dé