Devry COMP 220 Entire Course DEVRY COMP 220 iLab 2 Resistor Lab Report and Sour | Page 2

of the method you used to confirm that your program worked properly. If necessary, include a clearly labeled table with test cases, predicted results, and actual results. Summary and Conclusions: Include a summary of what the lab demonstrated and any conclusions drawn from the testing of the lab program. Answers to Lab Questions: Answer any and all lab questions included in the lab steps.
Summary: Write a statement summarizing your predicted and actual output. Identify and explain any differences.
Conclusions: Write at least one nontrivial paragraph that explains, in detail, either a significant problem you had and how you solved it or, if you had no significant problems, something you learned by doing the exercise.
Each lab exercise should have a separate section in the lab-report document. Your lab grade will be based upon
the formatting of your source code; the use of meaningful identifiers; the extent of internal documentation; the degree to which an exercises’ specifications are met; and the completeness of your lab report.
i L A B S T E P S STEP 1: Create a Multifile Project
Objective: Create a C ++ console application that will model the characteristics of a resistor. Create a multifile project. Create and add to the project an h file containing the resistor-class definition. Create and add to the project a cpp file containing the implementation of the class-member functions. Create and add to the project a ccp file containing the main() function, which will instantiate a resistor object and test its member functions.
STEP 2: Required Class Members The resistor class will, at minimum, have members that do the following.
store the nominal resistance value of a resistor store the tolerance of a resistor initialize any and all nominal-resistance values to correct, EIA, nonzero values that are greater than 0 and less than 1,000,000 ohms initialize any and all resistancetolerance values to correct, E12, E24, E48, or E96 resistance-tolerance values allow the nominal-resistance and tolerance values of a resistor object to be changed by the user All member functions should have a test message stating the name of the function. All the test messages should be displayed or not displayed, depending on the value of a Boolean variable declared in main(). If the Boolean, display the message. If the Boolean, do not display the message.