Design guide for considering concrete breakout in shear using ACI 318 anchoring-to-concrete provisions October 2025 | Page 72

PROFIS ENGINEERING
Table 6. Resultant Tension / Shear Loads and Individual Tension / Shear Loads
Anchor
Tension Load
N ua = 10,000 lb
Tension Load
( lb / anchor)
Sustained Tension Load
N ua, s = 6000 lb
Sustained Tension Load
( lb / anchor)
Shear Load
V ua =-50,000 lb
Shear Load
( lb / anchor)
Shear Load in x direction
V ua, x = 0 lb
Shear Load x-direction
( lb / anchor)
Shear Load in y direction
V ua, y =-50,000 lb
Shear Load y-direction
( lb / anchor)
1
625
375
3125
0
-3125
2
625
375
3125
0
-3125
3
625
375
3125
0
-3125
4
625
375
3125
0
-3125
5
625
375
3125
0
-3125
6
625
375
3125
0
-3125
7
625
375
3125
0
-3125
8
625
375
3125
0
-3125
9
625
375
3125
0
-3125
10
625
375
3125
0
-3125
11
625
375
3125
0
-3125
12
625
375
3125
0
-3125
13
625
375
3125
0
-3125
14
625
375
3125
0
-3125
15
625
375
3125
0
-3125
16
625
375
3125
0
-3125
Tension eccentricity
e c1, N( wrt x direction) 0.00 in
e c2, N( wrt y direction) 0.00 in
Shear eccentricity
e cV = 0.00 in
= highest loaded anchor in tension = highest loaded anchor in shear
Table 7. Geometry Checks
h ef = 12.0 in ESR-3814 Table 7 h ef, min = 3.5 in h ef, max = 17.5 in
12 in > 3.5 in OK
12 in < 17.5 in OK
c x- = ∞ c x + = ∞
c y + = ∞ c y- = 6.0 in
ESR-3814 Table 7
c min = 4.375 in
c min, actual = c y- = 6.0 in
6.0 in > 4.375 in OK
s x1 = 9.0 in s x2 = 9.0 in s x3 = 9.0 in
s y12 = 8.0 in s y23 = 8.0 in s y34 = 8.0 in
ESR-3814 Table 7
s min = 4.375 in
s min, actual = s y12 = s y23 = s y34 = 8.0 in 8.0 in > 4.375 in OK
h concrete = 15.0 in h ef = 12.0 in d hole = 1.0 in
ESR-3814 Table 7 ESR-3814 Figure 8A
h min = h ef + 2d hole = 12.0 in +( 2)( 1.0 in) = 14.0 in
1 5.0 in > 14.0 in OK
Table 8. Nominal Steel Strength in Tension( N sa) N sa = ESR value
ESR-3814 Table 6A
N sa = 26,780 lb / anchor
October 2025 72