PROFIS ENGINEERING
CASE 1 / CASE 2 applies for row 1 and row 3: calculate V cbg from row 3 using c a1, row 3.
V b = 7 l e d a
0.2 d a λ a f ′ c c a1
1.5
Reference yellow shaded area.
ACI 318-19 Eq.( 17.7.2.2.1a) l e = MIN h e f | 8d a
= 6.0 in h ef = 10.0 in d a = 0.75 in
normal weight concrete: λ = 1.0 → λ a = 1.0 ACI 318-19 Table 17.2.4.1
V b = [( 7)( 6.0 in / 0.75 in) 0. 2( 0.75 in) 0. 5 ]( 1.0)( 5000 psi) 0. 5( 18.0 in) 1. 5
= 49,618 lb V b = 9λ a f ′ c c a1
1.5 f’ c = 5000 psi
ACI 318-19 Eq.( 17.7.2.2.1b)
c a1, row 3 = 18.0 in
8d a = 6.0 in CONTROLS
V cbg =
V b =( 9)( 1.0)( 5000 psi) 0. 5( 18.0 in) 1. 5 = 48,600 lb check: design V b = MIN { 49,618 lb; 48,600 lb }
A Vc A Vc0
= 48,600 lb
ψ ec, V ψ ed, V ψ c, V ψ h, V ψ parallel, V V b
V cbg, row 2 =( 972 in 2 / 1458 in 2)( 1.0)( 1.0)( 1.2)( 1.5)( 1.0)( 48,600 lb)
= 58,320 lb
f’ c = 5000 psi |
c a1, row 3 = 18.0 in |
ACI 318-19 17.7.2.2 |
A Vc = 972 in 2 |
A Vc0 = 1458 in 2 |
ψ ec, V = 1.0 |
ψ ed, V = 1.0 |
ψ c, V = 1.2 |
ψ h, V = 1.5 |
ψ parallel, V = 1.0 |
V b = 48,600 lb |
Nominal Concrete Pryout Strength in Shear( V cpg) N cbg = 75,922 lb
There are 16 anchors in tension and 16 anchors in shear → calculate V cpg using N cbg or N ag for 16 anchors.
Pryout is a shear load. There is no shear load eccentricity. Divide ψ ec( tension load eccentricity value) from nominal strength values. reference page 97:
reference page 98: ψ ec, N = 0.938 N cbg for pryout = 75,922 lb / 0.938 = 80,940 lb CONTROLS N ag = 93,973 lb ψ ec, Na = 0.917 N ag for pryout = 93,973 lb / 0.917 = 102,479 lb
V cpg = k cp MIN N cbg | N ag ACI 318-19 Eq.( 17.7.3.1b) h ef = 10 in → k cp = 2.0 for h ef ≥ 2.5 in V cpg =( 2.0)( 80,940 lb) = 161,880 lb
October 2025 100