Demo 1 | Page 14

24 CHU Wenchang and DI CLAUDIO Leontina B4. Partitions and the Gauss q-binomial coefficients B4.1. Lemma. Let p` (n|m) and p` (n|m) be the numbers of partitions of n into ` and ≤ ` parts, respectively, with each part ≤ m. We have the generating functions: X p` (n|m) x`qn = 1 (1 − xq)(1 − xq2 ) · · · (1 − xqm ) (B4.1a) p` (n|m) x`qn = 1 . (1 − x)(1 − xq) · · · (1 − xqm ) (B4.1b) `,n≥0 X `,n≥0 The first identity (B4.1a) is a special case of the generating function shown in (B1.1b). On account of the length of partitions, we have p` (n|m) = p0 (n|m) + p1 (n|m) + · · · + p` (n|m). Manipulating the triple sum and then applying the geometric series, we can calculate the corresponding generating function as follows: X p`(n|m) x`qn = X X̀ pk (n|m)x` qn = `,n≥0 k=0 ∞ ∞ X X ∞ X = k=0 n=0 ∞ ∞ X X `,n≥0 pk (n|m)qn 1 1−x x` `=k pk (n|m)xk qn . k=0 n=0 The last expression leads us immediately to the second bivariate generating function (B4.1b) in view of the first generating function (B4.1a).  B4.2. The Gauss q-binomial coefficients as generating functions. Let p` (n|m) and p` (n|m) be as in Lemma B4.1. The corresponding univariate generating functions read respectively as   X `+m−1 ` n p` (n|m) q = q (B4.2a) m−1 n≥0   X `+m ` n p (n|m) q = (B4.2b) m n≥0