Current Pedorthics | July-August 2019 | Vol.51, Issue 4 | Page 42

Optimization of rocker sole footwear was motivated by our previous study [16] which showed marked plantar pressure increases when apex position was increased to 70% of shoe length. For each of the nine shoes, in-shoe plantar pressure was collected using Novel Pedar-X system (50 Hz) whilst participants walked at 1 m/s along a 20 m walkway. Speed was monitored during each trial Rocker angle is the angle between the floor and sole under the toe area (Fig. 1). Previous research has demonstrated that plantar pressure decreases as rocker angle is increased [15, 16] and increasing rocker angle is also a customization option [12] . However, increasing the rocker angle from 15° to 20° has a pronounced effect on the appearance of the shoe as the thickness of the outsole must be increased. It is therefore possible that use of a 20°rocker angle would reduce adherence especially if the footwear was to be used to prevent a first ulcer (when motivation for a change in footwear habits might be lower than once ulceration has been experienced). Furthermore, our previous research suggests that the benefits of increasing rocker angle above 15° may be marginal, especially if the apex position is chosen appropriately [16] . Therefore, we studied a 15° rocker angle (aesthetic design) and a 20° rocker angle (less aesthetic design) in the hope of achieving the target pressures in the former. A total of eight shoes were designed in which rocker angle (15° and 20°) and apex position (52, 57, 62 and 67%) were independently varied. All footwear was manufactured with the same outsole thickness (Fig. 1) sufficient to accommodate a 20° rocker angle at all apex positions. This meant that the outsole of some designs (especially those with a 15° rocker) was unnecessarily thick but ensured that all shoes were of the same weight. In addition, a control shoe was designed with exactly the same upper as the rocker footwear but with a flexible outsole, similar to that of a running shoe [21] . The outsole of all rocker footwear was manufactured using EVA (ethyl vinyl acetate) and incorporated a 5 mm thick layer of folex which ensured that the outsole was rigid. All footwear were produced by Duna® (Italy) using CAD/ CAM technology. 40 Pedorthic Footcare Association | www.pedorthics.org using optical timing gates and only those trials within 10% of the target speed used for further analysis. Shoe order was randomized, using a custom Matlab program, and participants completed a familiarization period of three-four minutes before data collection. A minimum of 25 steps was collected for each shoe. Following collection, the data was visually checked to identify the steps at the start and end of each walking trial which were then removed. Peak plantar pressures were calculated for each shoe design in three high- risk [10] regions: 1st metatarsophalangeal (MTP) joint, 2-4th metatarsal heads (MTH) and hallux. The Pedar sensors corresponding to each region were defined following Cavanagh et al. [22] and the peak pressures, calculated for each region, averaged across all steps to give a single value for each region and shoe. This process was repeated across all participants using custom Matlab software. The statistical analysis (outlined below) showed similar trends for both the left and right sides and therefore only data from the left side are presented in this paper. Statistical Analysis A two-way ANOVA model with repeated measures was used, in each anatomical region, to explore the effect of apex position and rocker angle on plantar pressure in the people with diabetes. This analysis was used to test for main effects of apex position and rocker angle and also to identify any possible interactions. If significant differences in main effects were observed, pairwise differences were investigated using a Bonferroni correction for multiple comparisons. Before testing, all data was checked for normality and homogeneity of variance. A significance level of α < 0.01 was chosen for all ANOVA analyses.