Current Pedorthics | January-February 2019 | Vol.51, Issue 1 | 页面 22

Lateral wedges - a crossover study BACKGROUND: Osteoarthritis (OA), commonly affecting the knee joint, is one of the most prevalent chronic musculoskeletal disorders and is a leading cause of long-term physical disability affecting adults [1]. While we are unaware of joint specific indicators of the economic burden of OA, a recent report indicates that more than 6.9% of the adult population in the Unites States had symptomatic knee OA in 2007-2008 [2] – a number that is expected to rise dramatically in the coming decades. Further, symptomatic OA (the combination of symptoms and radiographic evidence of OA) is more commonly found in the knee than in any other joint [3]. Given that there is no cure for knee OA and the overall economic burden of OA is high, there has been a recent push towards the identification of non-surgical, non-pharmacological treatments for knee OA that can be delivered effectively, safely, and with minimal personnel and economic resources [4]. Shoe-worn insoles/orthotics are a low-cost and low-burden self-management option that has widespread appeal for managing knee OA symptoms. Recent research confirms the link between knee and foot problems in people with knee OA. An examination of data from the Osteoarthritis Initiative showed that 25% of individuals with painful knee OA concurrently report foot pain, and that the presence of foot pain adversely affected overall health and function [5]. Individuals with knee OA also tend to exhibit more pronated feet compared to those without knee OA [6, 7]. Indeed, a recent study involving 164 people with symptomatic medial tibiofemoral OA reported that 45% had pronated or severely pronated feet [8]. Recent research 20 Pedorthic Footcare Association | www.pedorthics.org has also shown that the presence of foot/ankle symptoms significantly increases the odds of developing knee OA symptoms and symptomatic radiographic knee OA [9]. Additionally, rearfoot eversion during walking has also been shown to be associated with medial compartment knee joint load, as quantified by the external knee adduction moment (KAM) [10]. Specifically, more rearfoot eversion appears to be associated with lower KAM values. Finally, older adults with pronated feet are more likely to exhibit knee pain and medial tibiofemoral cartilage damage than older adults with other foot types [11]. Taken together, these findings indicate that people with pronated feet form a large, and clinically relevant, sub-group of the population with knee OA. Thus, targeted treatment approaches for this subgroup that considers their unique biomechanical needs may be warranted. However, current methods for the treatment of knee OA symptoms and biomechanics has typically failed to directly address any aspect of foot biomechanics in general, and in those with knee OA and concomitant pronated feet specifically. A commonly studied conservative treatment approach for knee OA is shoe-worn insoles, in particular insoles that are built up along the lateral edge (lateral wedges). There have been a number of studies examining the biomechanical and clinical changes associated with use of lateral wedges. Although lateral wedges have been shown to provide immediate reductions in KAM magnitudes [12, 13] – consistent with the reported negative correlation between increased rearfoot eversion (which would occur with lateral wedging) and the KAM [10] – the effects on knee symptoms are less clear [14]. A primary limitation of previous lateral wedges for