Corrosion Science Chemistry Research Article | Page 2

2 Corrosion: Understanding the Basics The Definition of Corrosion Corrosion can be defined in many ways. Some definitions are very narrow and deal with a specific form of corrosion, while others are quite broad and cover many forms of deterioration. The word corrode is de- rived from the Latin corrodere, which means “to gnaw to pieces.” The general definition of corrode is to eat into or wear away gradually, as if by gnawing. For purposes here, corrosion can be defined as a chemical or electrochemical reaction between a material, usually a metal, and its environment that produces a deterioration of the material and its proper- ties. The environment consists of the entire surrounding in contact with the material. The primary factors to describe the environment are the follow- ing: (a) physical state—gas, liquid, or solid; (b) chemical composition— constituents and concentrations; and (c) temperature. Other factors can be important in specific cases. Examples of these factors are the relative velocity of a solution (because of flow or agitation) and mechanical loads on the material, including residual stress within the material. The emphasis in this chapter, as well as in other chapters in this book, is on aqueous corrosion, or corrosion in environments where water is pres- ent. The deterioration of materials because of a reaction with hot gases, however, is included in the definition of corrosion given here. To summarize, corrosion is the deterioration of a metal and is caused by the reaction of the metal with the environment. Reference to marine corrosion of a pier piling means that the steel piling corrodes because of its reaction with the marine environment. The environment is air- saturated seawater. The environment can be further described by speci- fying the chemical analysis of the seawater and the temperature and ve- locity of the seawater at the piling surface. When corrosion is discussed, it is important to think of a combination of a material and an environment. The corrosion behavior of a material cannot be described unless the environment in which the material is to be exposed is identified. Similarly, the corrosivity or aggressiveness of an environment cannot be described unless the material that is to be ex- posed to that environment is identified. In summary, the corrosion be- havior of the material depends on the environment to which it is sub- jected, and the corrosivity of an environment depends on the material exposed to that environment. It is useful to identify both natural combinations and unnatural combi- nations in corrosion. Examples of natural or desirable combinations of material and environment include nickel in caustic environments, lead in water, and aluminum in atmospheric exposures. In these environ- ments, the interaction between the metal and the environment does not