Connection Summer 2013 | Page 21

PRECISION AG In the coming revolution, there will be a virtual command center running farm operations. data or output can be presented in many visual forms, such as graphs and maps in support of management decision-making. The Coming Fusion With this background, it is easy to appreciate the fusion of machines, sensors and models. In the coming revolution, there will be a virtual “command” center running farm operations. Sensors flying on aircraft and satellites overhead in conjunction with those judiciously placed in fields and on tractors will measure physical, chemical and biological properties important to crop production. These sensorbased measurements will be converted to electronic signals and transmitted by radio to the command center. Base computers located in the center will receive the transmitted signals and deliver the data embodied in them via the Internet to models in the cloud. The models will process the data and pass back products in the form of tables, graphs and maps, depicting the state and changes in environmental and biological phenomena impacting crop development and growth. The same models will pass back recommendations on courses of action given status of the phenomena monitored in the field. For example, a plant epidemiological model, inputting data collected in a field, may predict the incidence and severity of a disease important to crop yield. The model may recommend the timing and amount of a fungicide to minimize yield loss and control the spread of the disease. A farm manager would review the model-generated products and recommendation, and then choose a control tactic based on past experience and the available resources on hand. AGRONOMY map. This map would specify the rates of a chosen fungicide to be applied on a field according to the pattern of disease interpreted from sensor data. The variable-rate application map could be delivered wirelessly to spray equipment and, with GPS, guide the proper placement of the fungicide across a field. The fungicide application would change the progress of the disease, which would be indirectly monitored by sensor-recorded, environmental conditions. In a continuous cycle of sensed data, model processing of data and the incorporation of model products into precision agriculture programs, information would be generated to support management decision making during a growing season. As precision agriculture evolves, it will play an important role in driving the demand for the fusion of machine, sensors and models. It will provide programs that allow a farm manager to act on model products. The same programs will support management decisions by guiding the operations of machines. With each new development, precision agriculture, along with machines, sensors and models, wi