A |
B |
C |
D |
E |
|
A |
- |
40 |
27 |
58 |
59 |
B |
40 |
- |
43 |
46 |
28 |
C |
27 |
43 |
- |
44 |
37 |
D |
58 |
46 |
44 |
- |
41 |
E |
59 |
28 |
37 |
41 |
- |
Prim ’ s algorithm , starting at C , is used to find the minimum spanning tree for this graph . | |||||
( b ) |
For any two edges correct |
A1 |
|
For all edges correct |
A1 |
||
1 . |
Choose AC of cost 27 |
||
2 . |
Choose CE of cost 37 |
||
3 . |
Choose BE of cost 28 |
||
4 . |
Choose DE of cost 41 |
||
Thus , the minimum spanning tree is a tree | |||
containing AC , CE , BE and DE . |
A1 |
||