A |
B |
C |
D |
E |
|
A |
- |
30 |
26 |
48 |
52 |
B |
30 |
- |
40 |
26 |
22 |
C |
26 |
40 |
- |
24 |
32 |
D |
48 |
26 |
24 |
- |
40 |
E |
52 |
22 |
32 |
40 |
- |
Kruskal ’ s algorithm is used to find the minimum spanning tree for this graph . | |||||
( b ) |
For any two edges correct |
A1 |
|
For all edges correct |
A1 |
||
1 . |
Choose BE of cost 22 |
||
2 . |
Choose CD of cost 24 |
||
3 . |
Choose AC of cost 26 |
||
4 . |
Choose BD of cost 26 |
||
Thus , the minimum spanning tree is a tree | |||
containing BE , CD , AC and BD . |
A1 |
||