Analytics Magazine Analytics Magazine, May/June 2014 | Page 74

PR ED IC TIVE A N A LY T I C S certainly learn that if you keep reading. This book is focused on predictive analytics, which is not the only type of analytics, but the most interesting and important type. I don’t think we need more books anyway on purely descriptive analytics, which only describe the past, and don’t provide any insight as to why it happened. I also often refer in my own writing to a third type of analytics—“prescriptive”— that tells its users what to do through controlled experiments or optimization. Those quantitative methods are much less popular, however, than predictive analytics. This book and the ideas behind it are a good counterpoint to the work of Nassim Nicholas Taleb. His books, including “The Black Swan,” suggest that many efforts at prediction are doomed to fail because of randomness and the inherent unpredictability of complex events. Taleb is no doubt correct that some events are black swans that are beyond prediction, but the fact is that most human behavior is quite regular and predictable. The many examples that Siegel provides of successful prediction remind us that most swans are white. Siegel also resists the blandishments of the “big data” movement. Certainly some of the examples he mentions fall into this category – data that is too large or unstructured to be easily managed by conventional relational databases. But the 64 | A N A LY T I C S - M A G A Z I N E . O R G point of predictive analytics is not the relative size or unruliness of your data, but what you do with it. I have found that “big data often equals small math,” and many big data practitioners are content just to use their data to create some appealing visual analytics. That’s not nearly as valuable as creating a predictive model. Siegel has fashioned a book that is both sophisticated and fully accessible to the non-quantitative reader. It’s got great stories, great illustrations and an entertaining tone. Such non-quants should definitely read this book, because there is little doubt that their behavior will be analyzed and predicted throughout their lives. It’s also quite likely that most non-quants will increasingly have to consider, evaluate and act on predictive models at work. In short, we live in a predictive society. The best way to prosper in it is to understand the objectives, techniques and limits of predictive models. And the best way to do that is simply to read Siegel’s book. Thomas H. Davenport (www.tomdavenport.com) is a visiting professor at Harvard Business School, the President’s Distinguished Professor at Babson College, co-founder of the International Institute for Analytics and the co-author of “Competing on Analytics” and several other books on analytics. He is a member of INFORMS. This foreword by Professor Davenport is excerpted with permission of the publisher, Wiley, from “Predicti