Analytics Magazine Analytics Magazine, January/February 2014 | Page 32

ANALY TIC S I N T H E C LO U D historically been both very high ROI and very high cost. There has been constant pressure on the market to deliver ROI solutions more cost-effectively, and this is clearly driving cloud deployments of predictive analytics. The typical obstacles to predictive analytics also came through in the survey: data security and privacy, along with regulatory and compliance concerns, remain the primary obstacles reported. As one respondent said, “Cloud based solutions mean either storing or transmitting our proprietary data to the cloud. Although there are safe ways to do this, our management is not convinced.” Predictive analytics has a strong history in credit risk and fraud detection. Recently, much of the market’s energy has been directed toward the use of predictive analytics for maximizing the opportunity from customer interactions, often positioned as cross-sell/up-sell. The big focus area for predictive analytics among respondents is in customer interaction; however, the particular focus of respondents was on customer satisfaction, customer retention and customer management rather than on increased sales. Many respondents use predictive analytics in marketing and cross-sell/up-sell, but the number one focus is using predictive analytics to improve customer engagement. 32 | A N A LY T I C S - M A G A Z I N E . O R G Given the importance of the cloud to big data, with so many new data sources being cloud based, it seemed appropriate to investigate the impact of big data on predictive analytics in the cloud. In particular, the survey explored the degree to which new data types (the variety aspect of big data) and “recent-cy” (the velocity aspect of big data) were impacting respondents. When asked what data matters most to predictive analytic models, the vast majority of most respondents indicated it was what you might call traditional data types, and structured data from their own internal systems was by far the most important. The survey also revealed a definite sense that unstructured data from internal systems was becoming mainstream, while no other data types were deemed particularly important. When more experienced analytic teams were separated out, however, and only those with existing deployments or significant impact were considered, the picture was quite different. These more experienced teams show much higher usage of new data types than in 2011. Social media, sensor, weblog, audio and image data types are all rated as much more important in analytic models among those with successful analytic deployments as W W W. I N F O R M S . O R G