Analysis and Approaches for IBDP Maths Ebook 2 | Page 59

17 Paper 1 Section A – General Cases Example Prove by mathematical induction that n � r�1 n( n �1)(2n �5) � rr ( �2) � , n� . 6 [8] Solution 5 When n � 1, L.H.S. � rr ( �2) 1 � r�1 L.H.S. �� 1 1(1 �1)(2(1) �5) R.H.S. � 6 R.H.S. �� 1 Thus, the statement is true when n � 1. R1 Assume that the statement is true when n� k. M1 k k( k �1)(2k �5) � rr ( �2) � 6 r�1 When n�k� 1, k�1 �r( r � 2) � � r( r � 2) � ( k �1)( k �1� 2) M1 r�1 r�1 r�1 k k�1 k( k �1)(2k �5) 6( k �1)( k �1) � rr ( � 2) � � A1 6 6 k�1 � r( r � 2) � �k(2k �5) � 6( k �1) � A1 r�1 k�1 � r�1 r�1 k �1 6 k �1 r r k k 6 2 ( � 2) � (2 � � 6) k�1 ( k �1)( k � 2)(2k �3) � rr ( �2) � A1 6 k�1 ( k �1)(( k �1) �1)(2( k �1) �5) � rr ( �2) � A1 6 r�1 Thus, the statement is true when n�k� 1. � Therefore, the statement is true for all n� . R1 [8] www.seprodstore.com 49