Analysis and Approaches for IBDP Maths Ebook 2 | Page 177

54 Example Paper 2 Section A – Inverse Trigonometric Substitutions 12 Use the substitution x � tan� to show that 3 1 3 � 2 � dx � . 1 3 2 2 2 (1 � x ) [5] Solution x � tan� dx 2 2 sec � dx sec �d� d� � � � M1 �1 � x � 3 �� � tan 3 � 3 �1 � x �1�� � tan 1 � 4 � 3 1 1 3 2 �� dx � 1 3 � � �sec �d� A1 3 2 2 4 2 2 (1 �x ) (1 �tan �) 1 3 � 2 1 sec � 3 dx � d 3 � 3 � 2 2 4 sec � (1 � x ) � � A1 � 3 1 3 � dx � cos d 1 3 � � � � 2 2 4 (1 � x ) A1 � 3 1 3 � dx � 3 �sin� �� 1 2 2 4 (1 � x ) A1 3 1 3 � � 1 1 3 2 2 (1 � x ) � � dx �sin �sin 3 4 1 3 2 dx � � 3 2 2 2 2 (1 � x ) 3 1 3 � 2 � dx � AG 1 3 2 2 2 (1 � x ) [5] www.seprodstore.com 167