Analysis and Approaches for IBDP Maths Ebook 2 | Page 137

42 Paper 1 Section A – Mathematical Induction Example Prove by mathematical induction that f ( n f ) ( x ) represents the ( n) n ( �1) ( n �1)! ( x) � n 2 (1 � x) � 1 f( x) � (1 � x) . th n derivative of 2 � where n� and [7] Solution When n � 1, � 1 � L.H.S. ��2 � (1) 3 � �(1 � x) � �2 L.H.S. � 3 (1 � x) R.H.S. � 1 ( �1) (1 �1)! 1 2 � x � (1 ) �2 R.H.S. � (1 � x) 3 Thus, the statement is true when n � 1. R1 Assume that the statement is true when n� k. M1 f ( k ) k ( �1) ( k �1)! ( x) � k 2 (1 � x) � When n�k� 1, ( k�1) d ( k) f ( x) � ( f ( x)) M1 dx � 1 � ( ) ( 1) ( 1)!( ( 2)) (1) �(1 � x) � ( k�1) k f x � � k � � k � � k�3 � f f ( k�1) ( k�1) ( x) � ( x) � k�1 ( �1) ( k� 2)( k�1)! (1 � x) k�3 k�1 k�1 ( �1) ( k� 2)! ( �1) ( k�1�1)! � (1 �x) (1 �x) k�3 k�1� 2 Thus, the statement is true when n�k� 1. � Therefore, the statement is true for all n� . R1 A1 A1 A1 [7] 10 www.seprodstore.com 127