Analysis and Approaches for IBDP Maths Ebook 2 | Page 127

39 Paper 2 Section B – De Moivre’s Theorem Example (a) (i) Use the binomial theorem to expand (cos� isin ) 6 � � . (ii) Hence, express cos6� and sin 6� in terms of sin� and cos� . Let z�r(cos�� isin �) , where � is measured in radians, be the solution of which has the smallest positive argument. 6 z � � i 0 [6] (b) Find the values of r and � . (c) Hence, show that (d) Show that Solution � � � � � � � . 12 12 12 6 4 2 tan 15 tan 15 tan 1 0 � � � �� � � � � �� � � 12 12 �� 12 12 � 2 2 2 2 3cos �sin cos �3sin � 2 . [4] [3] [4] 9 (a) (i) (cos� � isin �) 5 6 � � � � 6 6 �6� 5 �cos � � � � i cos � sin� �1� � 6� 2 4 2 �6� 3 3 3 �� �i cos � sin � �� �i cos � sin � � 2� � 3� � 6� 4 2 4 �6� 5 5 �� �i cos � sin � �� �i cos� sin � � 4� �5� 6 6 �i sin � 6 5 4 2 � cos � � 6i cos � sin� �15cos � sin � 3 3 2 4 �20i cos � sin � �15cos � sin � �6i cos sin sin A1 A1 www.seprodstore.com 117