Analysis and Approaches for IBDP Maths Ebook 2 | Page 112

Your Practice Set – Analysis and Approaches for IBDP Mathematics SUMMARY POINTs � Forms of complex numbers: 1. z �a � bi : Cartesian form 2. z � r(cos� �isin �) � rcis� : Modulus-argument form 3. z � i re � : Euler form � Properties of moduli and arguments of complex numbers z 1 and z 2 : 1. z1z2 � z1 z2 2. z z 1 � z z 1 2 2 3. arg( z1z2 ) �arg z1 � arg z2 1 4. arg � z � � � � arg z � arg z � z2 � 1 2 � If z �a � bi is a root of the polynomial equation pz ( ) � 0 also a root of pz ( ) � 0 , then * z �a � bi is n � The roots of the equation z � rcis� are 1 � � 2k z r n cis � � , k �0,1, 2, , n� 1 n � De Moivre’s theorem: If n n z� rcis� , then z � r cisn� Solutions of Chapter 9 102 SE Production Limited