Analysis and Approaches for IBDP Maths Ebook 1 | Page 83

Front Page 28 Paper 1 Section A – Simple identities Example (a) Show that 5 � 1 � 1 . 36 4 9 2m �1 1 1 (b) Prove that � � 2 2 2 2 m ( m �1) ( m �1) m for m � 1. [2] [3] Solution (a) (b) R.H.S. 1 1 � � 4 9 1�9 1�4 � � 4�9 9�4 M1 9 4 � � 36 36 A1 5 � 36 � L.H.S. 5 1 1 � � � 36 4 9 AG N0 R.H.S. 1 1 � � ( m�1) m 2 2 2 2 m ( m�1) � � ( m �1) m m ( m �1) 2 2 2 2 2 2 m �( m�1) � 2 2 m ( m�1) ( m � ( m �1))( m � ( m �1)) � 2 2 m ( m�1) (2m �1)(1) � 2 2 m ( m�1) 2m �1 � �L.H.S. 2 2 m ( m�1) 2m �1 1 1 � � � m ( m �1) ( m �1) m 2 2 2 2 M1 M1 A1 for m � 1 AG N0 [2] [3] 8 www.seprodstore.com 75