Analysis and Approaches for IBDP Maths Ebook 1 | Page 252

Your Practice Set – Analysis and Approaches for IBDP Mathematics (c) (i) P( F� J) �P( J | F) � P( F) (M1) for valid approach �0.75� 0.58 (A1) for substitution � 0.435 A1 N3 (ii) P( F) � P( J) �0.58� 0.8 � 0.464 A1 � 0.435 R1 �P( F� J) Thus, F and J are not independent. AG N0 (d) P( F � J) � P( F�� J) � P( J) (M1) for valid approach 0.435 � P( F�� J) � 0.8 (A1) for substitution P( F��J) � 0.365 (A1) for correct value P( F) �P( F�) � 1 0.58 �P( F�) � 1 P( F�) � 0.42 A1 P( J | F� ) P( F�� J) � P( F�) (M1) for valid approach 0.365 � 0.42 � 0.869047619 � 0.869 A1 N3 [5] [6] Exercise 82 1. Consider the events A and B . It is given that P( A) � 0.4 , P( B) � 0.65 and P( A�B) � 1. (a) Find P( A� B) . (b) Find P( A�� B) . Consider another event C . It is also given that P( C) � 0.7 and P( AC� | ) 0.78 . [2] [2] (c) (i) Find P( A� C) . (ii) Show that A and C are not mutually exclusive. (iii) (d) Find P( C| A� ) . Show that A and C are not independent. [6] [6] 244 SE Production Limited