Analysis and Approaches for IBDP Maths Ebook 1 | Page 129

Front Page Solution (a) (b) (c) EAC ˆ �180 � 128 � 52 The bearing of A from E �360 � 52 (M1) for finding true bearing � 308 A1 N2 [2] ACE ˆ �180 �52 � 70 (M1) for valid approach � 58 (A1) for correct value AE AC � sin ACE ˆ sin AEC ˆ (M1) for sine rule AE 300 � sin58 sin 70 (A1) for substitution AE � 270.7421802 AE � 271 km A1 N2 [5] 2 2 2 DE � AD � AE � 2(AD)(AE) cos EAC ˆ (M1) for cosine rule 2 2 2 DE �(400) �270.7421802 �2(400)(270.7421802) cos 52 (A1) for substitution DE � 316.153292 DE � 316 km A1 N2 (d) Note that B lies on AC such that BE � AC . (M1) for valid approach ˆ BE sin EAC � AE sin52 BE � 270.7421802 BE � 213.3477495 (A1) for correct value Let v km/h be the speed of the ferry. BE DE � v 100 (M1) for valid approach 213.3477495 316.153292 � v 100 (A1) for substitution v � 67.4823748 Therefore, the speed of the ferry is 67.5 km/h. A1 N3 [3] [5] 11 www.seprodstore.com 121