Agri Kultuur April / April 2016 | Page 23

and its lobbyists with unprecedented backing from the US government. Even food aid has been used to push GM into Africa.'7; and 'It is clear that GM crops offer no benefits and cannot feed the world.'8 Propaganda on both sides of the argument therefore contributes to a skewed public perception of biotechnology, and creates confusion, mistrust and cynicism among consumers and scientists alike. Many scientists who develop genetically modified organisms (GMOs) believe that risk assessments are unnecessary or go beyond what is required to establish a lack of risk.1 Nonetheless, risk assessments are vital to determining human safety. For example, a transgenic soybean engineered to contain a protein from Brazil nut would have been fatal for those with nut allergies. The allergy studies performed during the risk assessment were therefore necessary.9 Moreover, there is a case where a risk assessment may have proved vital. In 1989, the Eosinophalia– Mayalgia Syndrome epidemic in the US, caused by the GM dietary supplement Ltryptophan, resulted in 37 mortalities.10 It is not certain whether the risk assessment performed was insufficient or whether it was undertaken at all. By claiming that risk assessments are excessive, GMO advocates unwittingly impede the progress of biotechnology by implying that the technology is above risk or that they fear scrutiny. In addition to determining health safety, environmental risk assessment is just as important. The conservation of biodiversity, including the preservation of landraces, is a global concern. A recent study in the US found that an unreleased transgenic herbicide-resistant creeping bentgrass introgressed into wild populations.11 Risk assessments are therefore imperative and not futile if performed with diligence. However, most African countries do not have the resources or expertise to do this. A debate continues among scientists as to whether a GMO is substantially equivalent to its non-GM counterpart. Substantial equivalence implies that a GMO, with the exception of the transgene, and the corresponding non-GMO are not significantly different. However, the recognition of intellectual property rights (IPR) makes a clear distinction between GM and non-GM products in terms of plant breeder's rights and patenting. In fact, GM and non-GM products are biologically dissimilar (one has a transgene) and the GM variety is subject to patent rights and technology fees. Patent laws are alien to farmers in Africa, especially subsistence farmers, who customarily save and share seed. Thus whether the scientific community agrees or not, the legalities of transgene technology prohibit classification of GM and non-GM crops as substantially equivalent. The numerous examples of 'gene escape' over the last few years indicate that coexistence of GM and non-GM crops requires careful management. In Nebraska in 2002, Prodigene's pharmaceutical maize commingled with soybean an d, in the same year in Iowa, crosspollination with conventional maize occurred.12 Prodigene's financial losses were more than US$3 million, which included fines and cleanup costs. Similar incidents of accidental transgenic entry into the food chain have occurred with Starlink maize13 and Liberty Link rice 601.14 Clearly, there is an urgent need for management to allow for coexistence and minimize commingling. The entry of a pharmaceutical crop into the human food chain would have devastating consequences for Africa, where maize is a staple food and resources to deal with such a situation do not exist. The recurring examples of gene escape suggest that more research is required to prevent this situation persisting. A sector of the biotechnology community believes that GMOs are unscientifically over-regulated, while others consider that regulations are insufficient. In the United States, the Food and Drug Administration (FDA) procedure to regulate GMOs is not that of approval but rather a consultation process, which is vol-