African Design Magazine October 2014 | Page 90

called sorption air-conditioning systems, which convert heat into cold, thus also enabling surplus heat to be used purposefully in summer, too. If, in addition, existing buildings are redeveloped energetically, the CO2 emissions will be reduced further. In its study “Intelligente Energieversorgung für Berlin 2037” (“Smart Energy Supply for Berlin 2037”), researchers at the Berlin University of Applied Science (Technische Universität Berlin) have for example established that the capital’s entire energy requirements can be reduced by 45 to 50% solely through the use of energy savings measures such as new heating systems and windows. The fact that the City of Tomorrow (Morgenstadt) will become reality and that high-performance modules, collectors and energy-saving windows can be used universally, across all applications, is however subject to one key condition: innovations in glass. Modern Glass façades protect against summer heat and remove the need for electricity-guzzling air-conditioning systems. Window panes enhanced with so-called electro-chrome nano-particles change their translucency when subject to tension or other trigger factors such as the sun’s rays or heating and thus serve as sun or glare protection elements. On the other hand, window façades are insulated so well that in winter no heat can escape outside – but, on the other hand, the winter sun’s energy can penetrate the rooms inside. In addition, glass protects the sensitive absorber coatings of the solar modules and collectors against external weather conditions, and thanks to special coatings and textures, contributes to more light being used for electricity and heat production. New flat glass, which is only a few millimetres thick, could provide the photovoltaics sector with an additional boost: It enables the production of particularly stable doubleglazing modules or glass sandwiches with embedded photovoltaic films. From 20 to 24 October 2014, Glasstec 2014 in Düsseldorf, the world’s largest and most international trade fair for the glass sector, will reflect the growing significance of glass as a material for climate protection objectives. Within the framework of the “Intelligent Building Shells” key theme, a comprehensive look will be taken at the aspects which are decisive for future- 90 africandesignmagazine.com orientated, energetically efficient and sustainable building shells. Using examples of large-format, façade mock-ups and one-to-one models, the “glass technology live” special show, which is organised by the University of Stuttgart, will present the latest developments in the area of façade and energy. Among other features, there will be demonstrations at the special show illustrating how modern heat insulation, sun protection glazing and switchable glazing can be integrated into buildings. One example is provided by the modular-structured “iconic skin” glass façade created by German company seele. The façade element appears to be completely homogenous, without any visible posts or pillars, lateral supports or other securing elements. The unit consists of internal and external glass. Between the glass sheets there is a self-regulating pressure-compensation system, which ensures passive ventilation through its interaction with the external climate. According to seele, the glass sandwich offers excellent thermal and sound insulation and enables the integration of solar protection elements. Maximum element sizes of 3.20 by 15 metres extend over several storeys to form one vertical, optical unit. The units can be individually designed: customers can freely choose the arrangement, form and size of the transparent areas as well as the printing and colour scheme of the external and internal glass surfaces. The Josef Gartner company, a subsidiary of the Italian Permasteelisa Group, has developed a different type of functionally stand-alone façade. The special feature of the CCF façade (Closed Cavity Façade) is that the space between the inner and outer façade shell is completely encapsulated. The enclosed chamber is fed with dried and cleaned air at slight over-pressure so as to prevent the formation of any condensation and dirt on the window panes – ensuring they do not have to be regularly cleaned in a costly, complex process. In the opinion of the experts, future solutions for the building shell will include an even greater integration of photovoltaics. Analysts from US market research company Nanomarkets estimate that up to 2019 the value of the Building-Integrated Photovoltaic (BIPV) glass market will more than triple from 823 million to US$ 2.7 billion. In their current BIPV report they assess