3rd Year Special Annual Double Issue Vol 4 Issue 1 & 2 Jan - Apr 2 3rd Year Special Annual Double Issue Vol 4 Issue | Page 22

descend faster by alternatively braking and releasing around once per second (though the danger of inducing a stall during this manoeuvre makes it an “experts only” technique), and the second, collapsing the wing immediately after touchdown to avoid being dragged, by either braking at maximum or quickly turning around and pulling down the D-risers (the last set of risers from the leading edge). Control Brakes: Controls held in each of the pilot’s hands connect to the trailing edge of the left and right sides of the wing. These controls are called “brakes” and provide the primary and most general means of control in a paraglider. The brakes are used to adjust speed, to steer (in addition to weight shift), and to flare (during landing). Weight Shift: In addition to manipulating the brakes, a paraglider pilot must also lean in order to steer properly. Such weight shifting can also be used for more limited steering when brake use is unavailable, such as when under “big ears”. More advanced control techniques may also involve weight shifting. Speed Bar: A kind of foot control called the “speed bar” (also “accelerator”) attaches to the paragliding harness and connects to the leading edge of the paraglider wing, usually through a system of at least two pulleys .This control is used to increase speed and does so by decreasing the wing’s angle of attack. This control is necessary because the brakes can only slow the wing from what is called “trim speed” (no brakes applied). The accelerator is needed to go faster than this. More advanced means of control 22 can be obtained by manipulating the paraglider’s risers or lines directly. Most commonly, the lines connecting to the outermost points of the wing’s leading edge can be used to induce the wing- tips to fold under. The technique, known as “big ears”, is used to increase rate of descent .The risers connecting to the rear of the wing can also be manipulated for steering if the brakes have been severed or are otherwise unavailable. For ground-handling purposes, a direct manipulation of these lines can be more effective and offer more control than the brakes. The effect of sudden wind blasts can be countered by directly pulling on the risers and making the wing unflyable, thereby avoiding falls or unintentional takeoffs. Fast descents Problems with “getting down” can occur when the lift situation is very good or when the weather changes unexpectedly. There are three possibilities of rapidly reducing altitude in such situations, each of which has benefits and issues to be aware of. The “big ears” maneuver induces descent rates of 2.5 to 3.5 m/s, 4–6 m/s with additional speed bar. It is the most controllable of the techniques and the easiest for beginners to learn. The B-line stall induces descent rates of 6–10 m/s. It increases loading on parts of the wing (the pilot’s weight is mostly on the B-lines, instead of spread across all the lines). Finally, a spiral dive offers the fastest rate of descent, at 7–25 m/s. It places greater loads on the wing than other techniques do and requires the highest level of skill from the pilot to execute safely. Big ears Pulling on the outer A-lines during non-accelerated, normal flight folds the wing tips inwards, Vol 4 | Issue 1 |Jan - Feb 2019